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ABSTRACT

In this study various through and part-through crack problems in
plates and shells are considered. The line-spring model of Rice and
Levy is generalized to the skew-symmetric case to solve surface crack
problems involving mixed-mode, coplanar crack growth. New compliance
functions are introduced which are valid for crack depth to thickness
ratios at least up to .95. This includes expressions for tension and
bending originally used by the model for symmetric loading as well as
new expressions for in-plane shear, out-of-plane shear; and twisting
for the skew-symmetric case. Transverse shear deformation is taken
into account in the plate and shell theories and this effect is shown
to be important in comparing stress intensity factors obtained from
the plate theory with three-dimensional surface crack solutions.
Stress intensity factor results for cylinders obtained by the line-
spring model also compare well with the three-dimensional sclutionms.

By using the line-spring approach, for a given crack length to
thickness ratio, stress intensity factofs can be obtained for the
through crack and for part-through cracks of any crack front shape,
without need for recalculating integrals that take up the bulk of the
computer time. Therefore, parameter studies involving crack length,
crack depth, shell type, and shell curvature are made in some detail.
The results presented are believed to be useful in brittle fractufe,
and more importantly, in fatigue crack propagation studies.

The line-spring model is also used to solve the contact problem
in plate bending. Investigations into stress intensity factors for
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crack growth in the 1length direction (as opposed to growth in the
thickness direction), are also made by using the model. The endpoint
behavior of the results given by the line-spring model is considered
in detail.

In addition to part-through crack problems, some results for
single and double through cracks are presented. The thin plate
bending 1limit of Reissner’s theory and its relationship to the
classical theory are reconsidered.

All problems considered in this study are of the mixed boundary
value type and are reduced to strongly singular integral equations
which make use of the finite-part integrals of Hadamard. These
equations are obtained by using displacement quantities as the
unknowns, rather than the more commonly used displacement derivatives
which lead to integral equations with Cauchy singularities. The
equations are solved numerically in a manner that is believed to be

very efficient.




CHAPTER 1

Introduction, Literature Survey and Overview

1.1 Introduction

Pressure vessels, pipelines, containers, ship hulls, etc. are all
shell-like structures which can fail by fracture. The designers of
these components must take this into account as such failures are
often catastrophic, endangering lives and the environment. The
fracture process typically starts with a small material defect or weld
imperfection that grows in fatigue which is driven by mechanical or
environmental conditions. Eventually the flaw may be characterized as
a macroscopic surface crack. This surface or part-through crack then
continues ' its growth through the thickness, leading to failure_by
leaking or to unstable fr;cture.

In the discipline of fracture mechanics one usually assumes an
initial flaw configuration, and then seeks to obtain certain fracture
parameters th;t are believed to govern the tendency of the crack to
grow. In the case of brittle fractures and mnore -importantly,
fractures by fatigue, the stress intensity factor (SIF) is the most
commonly used parameter.

The analysis of through cracks in thin structures was first
perforned within the theory of plates and shells, which allows for a
‘straightforward analytical solution for practical geometries such as
cylinders, spheres, and pipe elbows. The problem is‘of the mixed
boundary value type and is reduced to a system of dual integral
equations or a system of singular integral equations (SIE), most often
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the latter. It is usually assumed that the curvatufes are constant
and the shell has constant thickness, the material is homogeneous,
isotropic, or perhaps specially orthotropic, and behaves in a linear
elastic manner. Three-dimensional effects due to the interaction
between the free surface and the crack plane are neglected. Benthem
[1] has investigated these effects for a crack in a half space. To
date no research has included this surface layer behavior in a problem
with a practical geometry.

The surface crack has a three-dimensional geometry which seems
accessible only to either analytical or numerical techniques from the
theory of elasticity. Rice in 1972 [2,3] introduced the so-called
line-spring model (LSM) which transformed the part-through crack into
a through crack problem by making use of the edge-cracked strip plane
strain solution. This model has been shown to give very good results
in spite of its simplicity. Therefore, within the limitations of this
model, both through and part-through crack problems can be solved with
the same plate or shell theory formulation.

It is important to point out that for a through crack the primary
interest is in the behavior of the stress state at and near the crack
tip. Whereas, for surface cracks the most important point is the
deepest penetration point of the crack front. The model in its
original form is limited to symmetric (mode 1) fracture, and cannot
predict behavior at the endpoint where the crack‘front meets the free

surface (again neglecting the free surface effect).




1.2 Literature Survey

The problem of determining the singular stress field in an
infinitely large plate of thickness h, containing a finite crack of
half-length a, subjected to tension was studied by Williams [4] in
1957. In a 1960 paper [5] Williams also investigated the ﬁroblem of
plate bending by using the classical plate theory. Although in the
bending problem the stress singulérity was observed to be the same as
in the plane elasticity case, (namely r_1/2), the angular variation of
the stresses around the crack tip was found to be different. Shortly
after this paper was published, Knowles and Wang [6] showed that this
discrepancy could be removed if the 6th order Reissner plate theory
[7,8], which includes transverse shear deformation, was used. This
theory allows for the satisfaction of all three crack surface boundary
conditions (lxy=0, Vx=0, ny=0), instead of combining these three
conditions into two as did the previous theory by use of the Kirchhoff
condition, ~(ny=0, Vx+ E;§1 =0). The work of Knowles and Wang was
iater made more complete by Hartranft and Sih [9] and by Wang [10].
In these papers the SIF solution is given for various crack length to
plate thickness ratios, i.e. (a/h).

In the paper by Knowles and Wang it was observed that Reissner’s
theory approaches classical theory in the limit as h/a*0, or as the
plate gets thin. This limit is ﬁell behaved except at the crack tip
where boundary layer behavior in the SIF is indicated by graphical
solutions. [9,10]. This "discontinuous® behavior was discussed by
Civelek and Erdogan [11] with the aid of more complete and more
precise numerical results, but not proven. Also it was pointed out by
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Hartranft [12] that this 1limit should not be used. For more
discussion of this problem see Sih [13].

In all of the preceeding papers the solution was limited to
symmetric (mode 1) loading, which includes tension and bending. Wang
in 1970 [14] was the first to consider twisting, again with Reissner’s
plate theory. The asymptotic stress field was shown to be compatible
with 2-D elasticity, therefore mode 2 and 3 SIFs had the same
elasticity definition. This problem is not approachable by the
classical theory for the same reasons that apply to plate bending.
The results of Wang [14] were extended by Delale and Erdogan [15] to
include specially orthotropic materials.

The first analysis of cracks in shells was presented by Folias in
1965 for a cracked sphere [16,17] and for an axially cracked cylinder
[18]. The circumferentially cracked cylinder was investigated in 1967
[18]. The results in these papers are asymptotic in nature for short
cracks. A shallow shell theory was also used which linearizes the
governing equations. The full curvature problem is non-linear and has
not yet been solved by analytical techniques although Sanders [20,21]
has used a thin shell theory which is linear yet valid for a complete
cylinder to obtain energy release rates (not SIFs) for long cracks.
The validit& of shallow shell analysis can be summarized as follows:
for a given shell radius, the smaller the thickness h, the more

appropriate the shell assumption; the shorter the crack length 2a, the

more appropriate the shallow shell assumption.
In the late 1960’s Erdogan and Kibler [22] and Copley and Sanders
[23] provided a more complete solution to the problems studied by
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Folias. Although the same approximate, shallow shell equations are
gmployed, the numerical techniques for the solution of the singular
integral equations are exact (to any reasonable specified degree of
accuracy).

The major shortcoming of these early shell solutions, including
the work of Sanders [20-21], was the neglect of transverse shear
deformation as in the early plate bending problem. In shells, since
extension and bending are coupled, the elasticity concept of the SIF
cannot be used with these 8th order theories without redefinition. As
bending becomes more of a factor in the geometry and loading
considered, the results become less accurate. Also the contribution
from extension is affected. It was Sih and Hagendorf [24] in 1974 who
first solved cracked shell problems with transverse shear accounted
for; see also a second paper by Sih [25]. Later papers, which used
the shallow shell governing equations due to Naghdi [26], provided

more exact and extensive results for the axially cracked cylinder

viiT anasiag )

Krenk [27], and for the circumfereﬁtially cracked cylinder, see Delale
and Erdogan [28]. It was shown in these papers that the asymptotic
stress field obtained is compatible with the solution from the theory
of elastic fracture mechanics; therefore standard fracture parameters
such as the SIF could be used. The skew-symmetric shell problem was
studied by Delale [29] and it was shown that the mode 2 and 3 stress
intensity factors also have the same elasticity definition. Therefore
it appears that the simplest shell theory that may be used to study
cracks in plates and shells to obtain SIFs is one that includes
transverse shear deformation, ([7,8,26]. 1In 1983 Yashi and Erdogan

7



[30] solved the shallow shell problem for a crack arbitrarily oriented
with respect to a principal line of curvature. They used the same
formulatioﬁ as was used by Delale and Erdogan [28], but the analysis
‘involved ten unknowns instead of two [28] or three [28] because of the
loss of symmetry.

In all the previous éhell solutions which included transverse
shear deformation, the assumption of shallowness has been applied.
Barsoum, Loomis, and Stewart [31] were the first to publish results to
the complete through crack problem in a cylinder by using finite
elements which took into account transverse shear deformation. There
is good agreement between these results and the results from the
shallow shell theories [22,27], even for relatively long cracks. More
recent finite element calculations by Ehlers [32] disagree with the
work of Barsoum, et. al. However these calculations are limited to
a/R>.5, which for a "shallow shell", is a very long crack. More work
must be done to determine the error due to the shallow shell
assumption for increasing a/R. This theory may be regarded as an
asymptotic solution for small a/R.

The study of surface cracks in plates and shells has a more
detailed history involving three-dimensional numerical techniques
because it is both more important and more difficult. In addition to
the finite element method [33,34], there is the alternating method
[35,36], the boundary integral equation method [37], the finite
element alternating method ([38-40], the method of weight functions
(41,42], and the Body force method [43]. The standard solution for
plates is that of Newman and Raju [33]. The more recent work of
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Isida, Noyuchi, and Yoshida [43] have verified these results ana
perhaps slightly improved upon them. For reviews of the various
solutions and methods see [44-46].

The previous studies for surface cracks deal only with mode 1
loading, which is the most important mode for crack extension.
However there are situations that involve twisting and shearing that
cannot be neglected. For instance, depending on the geometry, when
these loadings are primary, a secondary mode 1 contribution can
result. The body force method [47] has recently been applied to an
inclined surface crack in a half space which involved all modes of
fracture. This problem has not received much attention in the
literature, because it is less important than mode 1, and also more
expensive to solve.

As mentioned previously the line-spring mwmodel allows for the
solution of the 3-D surface crack problem within the 2-D theory of
plates and shells. This reduces the computational effort
considerably. Therefore more extensive parameter studies can be made
once the model has been verified by the more accurate three-
dimensional methods.

Since the introduction of the model in 1972 [2], there have been
numerous papers suggesting improvements and modifications. As with
the through crack problem the wuse of a Reissner plate theory has
improved the results [48,49], especially for realistic crack lengths
on the order of a/h=1. The classical theory gives good results for
a/h22, and in the limit as a/h+® the two theories are the same (for
the LSM). The initial suggestions of Rice [3] concerning the use of
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the model to study plasticity effects have been advanced by Parks [50]
and more recently by Miyoshi, Shiratori, and Yoshida [51] who used the
model with thick shell finite elements to predict crack growth. Other
researchers [49,52] have devised techniques that implement a numerical
plate or shell solution instead of the original singular integral
equation procedure. This is an advantage in shell analysis, because
to date, the analytical techniques are limited to the shallow shell
theory whiéh is not valid for long cracks. ﬁowever the long surface
crack is not a practical geometry, =and if needed, can usually be
approximated by a plane strain solution.

Yang in a recent paper [53] has considered crack surface loading
in the form of a polynomial to solve problems of residual or thermal
stress. The original LSM used only the constant and linear terms
associated with tension and bending plate variables respectively.
Theocaris and Wu [54,55] have suggested a way to determine the SIF at
the corner of a surface crack. This method seems iqappropriate since
they have used the classical theory of plate bending which is unable
to predic£ this value for the much simpler through crack case. The
finite width plate has been solved by Boduroglu and Erdogan [56,57].
All previous LSM solutions were for an "infinitely large" plate.
Erdogan and Aksel have considered the cavity in a plate [58] and Wu
and Erdogan have extended the LSM to an orthotropic plate [59].
Delale and Erdogan [60] have used the model with a shallow shell
formulation to predict SIFs for surface cracks in cylinders for axial,

circumferential, inner and outer cracks.
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1.3 Overview .

The primary interests in this study are to extend the LSM to the
mixed-mode case and to use the model to approximate crack growth
tendencies in the length direction as opposed to the depth direction
for which it already applies. In Chapter 2 the line-spring model for
mixed-mode loading conditions is derived. Furthermore, the mode 1
compliance relations [61-63,48] are improved by using the recent edge-
cracked strip solution of Kaya [64]. The curves are fit to data for
OS(LO/h)S.QS and may be used for the entire range of values as the
curves have the proper asymptotic behavior for (Lo/h)+1 [65]. Also
the necessary solutions for modes 2 and 3 are obtained.

In Chapter 3 some unsolved through crack problems in plates are
considered and the thin plate 1limit for Reissner’s theory is
investigated to better understand the validity of the classical plate
theory when applied to the LSM. In Chapter 4 the LSM, with and
without including the transverse shear deformation, is compared to
finite element surface crack solutions. SIF comparisons are also made
for the corner of a semi-elliptical surface crack. The contact
bending or crack closure problem, a difficult unsolved 3-D problem, is
solved in a straightforward manner. Also extensive SIF results af;
given for both rectangular and semi-elliptical crack shapes under all
five loading conditions, i.e. tension, bending, out-of-plane shear,
in-plane shear, énd twisting.

Crack problems in shells are considered in Chapters 5 and 6.
Comparisons of surface crack solutions obtained with the model are
made with 3-D solutions from the literature [34,40]. Various unsolved
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through and part-through problems are considered and the effect of
curvature is studied for both the symmetric and the skew-symmetric
cases.

All integral equations are derived with displacement quantities
as unknowns. The resulting equations are, therefore, strongly
singular and make use of the finite-part integrals of Hadamard [66],
see also Kaya [67]. Finite-part integrals as used in this study are
defined in Appendix B. The numerical techniques used to solve these
equations are presented in Appendix E.

The definition of stress intensity factors (SIFs) that are

referred to throughout this dissertation is given in Appendix G.
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CHAPTER 2

The Line-Spring Model

2.1 Introduction.

A surface or part-through crack in a pipe, pressure vessel, or
any other shell-like structure is a common and important flaw geometry
to analyze, see Fig. 2.1. Because the elasticity problem is three-
dimensional, many solutions involve expensive numerical techniques
such as the Finite Element Method [33,34], the Alternating Method
[35,36], the Boundary Integral Method [37], the finite element
alternating method [38-40]), the method of weight functions [41,42],
and the body force method [43]. This problem has also been formulated
analytically for a flat plate or strip in terms of two-dimensional
integral equations, but has not been solved [67].

The line-spring model, proposed by Rice and Levy [2], and
incorporated in a plate or shell theory that allows for transverse
shear deformation [7,8,26], competes with these methods because of its
simplicity and surprising accuracy. See Figs. 4.1-4, 6.1,2, for
comparisons with the Finite Element Method and for the effect of
transverse shear for various geometries in mode 1 loading.

Briefly, the model allows one to use a plate or shell theory to
formulate the problem by removing the "net ligament", and replacing it
by unknown, thickness averaged stress resultants which are treated as
crack surface loads 'in a through crack problem. See Fig. 2.2 for a
mode 1 1illustration of this process. This reduces by one dimension
the complexity of the analysis. The force resultant and displacement
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variables used in both plates and shells are given below and are
defined in Figs. 2.3a-c. Also the corresponding fracture modes are

included in the figures.

Y= { PPy Fpf, R ) (2.1)
{ Nxx xx’ x ny Mxy } g ' (2.2)

- {boy, Vo, 2oy, bay, b;as} , (2.3)
T = {opugugiugug )= {uofonun ) (2.4)
6, =ul -u;  i=l,...,5 . | (2.5)

The two-dimensional formulation of through and part-through crack
problems in plates and shells as a mixed boundary value problem makes
use of the superposition illustrated in Fig. 2.4. With regard to
these figures, ﬁi are the constant applied loads at "infinity" or away
from the crack region and N and M are unknown stress resultants which
are due to the net ligament of the part-through crack. In the case of
a through crack, the crack surfaces are stress-free so N=M=0. For the
solution of the mode 1 pertursation problem in a plate shown in Fig.
2.4, the following singular integral equations must be solved:

2”( ) g - -® N ), (2.6)
(t-y)*

b
1i8% )( (lz(t; at + L [ K, 0p0) av = @ M) @)
y a

For the derivation of Eqns. 2.6,7 and for the expression for K22(y,t),
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7, and v see Chapter 3. Also see Appendix B fof the interpretation of
the strongly singular integrals appearing iﬂ these equations. The
unknowns in the equations are N, M, u, and f. Since there are four
unknowns and only two equations more information is needed. In the
derivation that follows N and M are linearly related to u and f in the
manner of a spring. After substitution of these relationships into
Eqns. 2.6,7, u and f can be numerically determined from which all

quantities of interest can be calculated.

2.2 Derivation of the Compliance Relationships.

The line-spring model is based on two assumptions. The first,
previously stated, and illustrated in Fig. 2.2, involves replacing the
net ligament (in which the state of stress is two-dimensional), by
resultant forces which are functions of y only. The second assumption

is that the stress intensity factors along the crack front may be

obtained from these resultant forces as though the stress state were
one of plane strain. The restriction at the ends of the crack and the
crack front curvature, both act against this assumpfion. Therefore
the model is most accurate in the center of the crack and improves :s
the crack gets longer for a given «.ack depth, i.e. as plane strain
conditions are approached.

In order to make wuse of this analogy, the plane strain stress
intensity factor solution for an edge-cracked strip must be availéble
for the five possible loading conditions in a shell on a given
surface, see Egns. 2.2,3 and Fig. 2.3a-c. These solutions are
presented in Appendix C along with a curve fit in the form,
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k. K. n

b 1 1 k
R = = = “ ) . 28

[

where L is the crack depth, and the variable { is the ratio of the
depth L to the strip thickness h, i.e. {=L/h. From Fig. Q.Sa—c, when
i=1 or 2, j=1, when i=3, j=2 and when i=4 or 5, j=3. The exponent X
is 3/2 when i=1,2 (mode 1), and 1/2 when i=3,4,5 (modes 2,3). The

constants n, and Cik are given in Appendix C. From this follows

K1 = {n¢h [ 0,8) * 0589 ], (2.9)
K, = LILINJN - S (2.10)
K3 = {xéh [ 0484 * 0585 ] . (2.11)

In these expressions ai=oi(y) represents the net ligament stresses
according to the relations given in Fig. 2.3. Note that £=£(y).

The derivation is based on expressing the energy available for
fracture along the crack front in two different ways. First we
generalize Irwin’§ relation [68,69] for the potential energy release

rate,

2
dvy - o 2 LV { 2 2,1 .2 }
SLU-V) = €= 5 K] + Ky + 75 K3 } » (2.12)

where U is the work done by external loads and V is the strain energy.

The use of the relation,

(1-v*)K2
Gy = —p—2 . (2.13)

involves the assumption that the crack will grow in its own plane.

This would apply to structures that are made of composite materials
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that may have a weak cleavage plane [70]. If the crack deviates from

a straight path, G2 in Eqn. 2.13 is not the energy dissipated by

incremental crack growth, and therefore Eqn. 2.12 would not be valid.
With the assumption of coplanar crack growth, Eqns. 2.9-11 are

substituted into Eqn. 2.12 to obtain,

2
d 1P 22 22 22
a(U-V) = bg { 018) + 20100818y *+ Op8p + 0383 +

15 | %l « wogeges + ol |} - (2.14)

Next consider the crack to extend from L to L+AL under "fixed

load®™ conditions. The changes in U and V are as follows (refer to
Fig. 2.5 for the notation used),

AU = F.A6, (2.15)

AV —F(a +46,) -

F.6, =3 F.6, , (2.16)

where Fi and 6i are defined in Eqns. 2.1-5.
After writing

66

A5 = ai“ AL , (2.17)

due to the force Fi’

86,
(u v =1 5 F. 30 - (2.18)

The sum of all five loadings is,

86

4 .
EE(U_V) :EEFI 5i . (2.19)

Defiﬁe the following matrices,
b T —_ ? ) ) ) —_ b. ..2. b-
3" = { 5i'52’53’64’55»} - {68053 6580865}, (220
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81 glgz 0 0 0
818 8 0 O 0
6] = |0 0° g 0 0 . (2.21)
0 o o031 2 L
1.v 84 1-v gégs
{ 0 0O O 1 g 1
1-v 8485 1-v 85

Now equate Eqn. 2.14 to 2.19 using Eqns. 2.3,20,21 for substitution to

obtain,
2
b 20 610} = 3 b {0} 46}, (2.22)
or
2
5 (6%} = 2L (a)oy . (2.23)

Integrate and observe that ¢ # o(L),

2. . L 0

@y - 20 { IO[G] ar} o} + {6 My - (2.24)
Next define

1 (& 3

B =) =g [ @a=] e, e, (2.25)
where

a,, = Jg de , i,j=1,2,3 (2.26)

ij Ogigj ) yJ=L,4, .
and

1 (¢ .
4G =Ty Jogigj d¢ , 1,j-4,5 . (2.27)

Because of the form chosen for the functions g, (see Eqn. 2.8), a.lj
are determined numerically. When the matrix [B] is substituted into

Eqn. 2.24 and the equation is solved for the stresses, the result is
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E -1..,
{0} = —2— B 745}, (2.28)
2h(1-v°)
where
a22/A1 -a12/A1 0 0 0 ]
—a12/A1 all/l\1 0 0 0
8] 1= 0 o lagg 7A » ?A , (2.29)
. 55’72 45" "2
|0 0 0 -au/by  ag/by |
and
A, = d Q- a2 A, =a,,a. .- a2 (2.30)
1 11722 "12° 2 4455 745 - )

Eqn. 2.28 has the information that is needed for substitution

into integral equations of the form of Egns. 2.6,7. First it must be

non-dimensionalized. This 1is done according to the definitions in
Appendix A. Since all problems in this dissertation are either
symmetric or skew-symmetric we have 51 = 2ui, ie. lu'l= lu"l= u; .

The final non-dimensional result is:

71 = 111" * TigY%2 »
0y = B8[1g3u; + Yool »
[ -5—‘ u
3 = 8(1+v) 133"3 ’
Oq4 = T4q" * T45Ys5 »
oy = 6[754u4 + 755u5] , (2.31)
u, = (l—uz)[ a,.0. + a, 0, ]
1 1191 * %1% 1
u, = 6(1—u2)[ @, 0. + Ayn0o |
2 1271 * %% 1
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-3 1,2
ug = 5 (1-v%) @350
u, = (1 1/2)[ a,0, + a,.0. ]
4 44" 4 45°5 ¢
ug = 6(1-v7) [ @404 5575 ], (2.32)
where
g 22 . e ¥
1 ’
1,2 127 g(1-0%) A
1 1
1 a
11
Tor = e > 22 ~ N
: 36(1- u)
16 1
133 = 15(1-v) a,, '’
L g e
4 - 2 ! 45 ~ 2 ’
1-v A2 6(1-v7) Az
1 a
44
7 — 7 '1 = — (2.33)
54~ Ta5 55~ 36(1-09) b,

If these equations are now substituted into Egns. 2.6,7, the

result is,

% ll_(__)_ dt - 71111 - 7]2p = _ﬁ XX = —:1 , (234)
(t-y)?
7(1 Vgl B(t) dt , ] K..(y,t)f(t) dt
% (t- Y) 2 I 22
" Mgt T Toof = _mxx = ‘:2/6 : (2.35)

The compliance coefficients 7ij are indirectly functions of y
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through the variable £ which is the non-dimensional crack depth. Note
that for a through crack the 7ij are zero. In this case thé equations
uncouple and respectively correspond to tension and bending loadings.
Since the model is most accurate in the central portion of the
crack, it is best applied to problems where failure occurs when the
surface crack grows through the thickness leading either to leaking or
to the development of a through crack which then grows in length to
critical size. Because of the plane strain assumption, the model
becomes less applicable near the ends of the crack. Although the
model unexpectedly gives reas&nable results here (see Figs. 4.1-4 and
6.1,2 where curves are drawn up to y/a = .98), the use of the solution
in this region for anything other than general trends is not
justified. Even though the solution at the ends is not used, the
behavior of the solution here plays a role in the convergence of the

method over the entire range, and therefore should be examined.

2.3 Endpoint behavior.

In the case of the through crack it is known that the behavior of
the displacement quantities are of the form (see Appendix D),

u (8) = £, (8) (147 1z - (2.36)

where the square root is referred to as the weight function (of the
integral equation) and fi(t) is a simple function which can be
represented by a polynomial that is easily obtained numerically. Note
that the crack domain has been normalized to (-1,1). If ui(t) were

determined without extracting the endpoint behavior given by the
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weight function, convergence of ui(t) towards the ends (i.e. -1,1)
would be unacceptably slow. Also in the through crack problem the
stress intensity factors are proportional to f(-1) and f(+1), and
therefore can only be found if the weight is extracted. The addition
of the line-spring terms into the integral equation has an effect on
this asymptotic analysis only if the net ligament stresses are
unbounded, which is unreasonable. If these stresses are assumed to be

finite at the ends, Eqns. 2.32 and 2.36 show that,

Uy = (1-) [ 2,191 * 21905 1 = £;(¢) a-t31/?

u, = 6(1-v°) [ @100 * Byo0, ] = f5(t) (1-t21/2 ,

ug = % (1-17) @905 = 14(t) 1-tH1/2

Uy = (a-vA1 @04 + 0,505 1 = 1,(¢) 1-t3H1/2

U5 = 6(1-v%) [ ay0, + ageog ) = £5(t) a-t31/2 (2.37)

For finite, non-zero net ligament stresses, aij in Egns. 2.32 must
carry the square root behavior as t approaches -1 and 1. Recall that
aij are functions of t through the crack shape variable . If the
crack depth of the surface crack is non-zero at the enq§ as in the
case of a rectangular crack, a.lj wi11~be constaﬁt atvihe endpoints.
The solution will then require o, to be zero at the endpoints, a
condition that does not seem reasonable. If the crack depth, ¢ is

zero at the ends, the behavior of aij will depend on how  goes to

zero. For small § we may write
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N .
~ J
g; = Jgocijg ; | (2.38)

from which we obtain from Eqns. 2.26,27,

T 2 .2 27 3 4
a1 =3 108" * 73 o1+ 0(E)

L 1 1 3 4
@15 = 89y =5 S0Ce0f * 3 [ 9oty * C1Cpl€ + 0(ET)
_x 2
Qg9 =23 €©
o X
334

(l—u)a44 =

|
(V)]
(¢}
[N
QQ
v
+
w
(¢}
1-%
(»]
O
N
Pk
U2
+
o
~~
n
~r

I
~~
o
S
S’
R
(%3]
V-8
1]
(I}
[¢]
N
(=)
[¢]
[*2]
o
v
N
+
wi=
—
(¢}
N
o
[¢]
wn
(v
+
(¢]
A}
o
[¢]
>
b
—
"2 .Y
w
+
o
~~
n
>
N

(l—u)a45 =

r 2 .2 21 3 4
(l-V)a55 =3 c50§ + 53 c50c51§ + 0(¢) , (2.39)

where from Eqn 2.8 the cij in terms of the Cij are,

c.n = C. ,

i0 10

€4y T Cil + XCio . . (2.40)

More terms in this series are given in Appendix F.
In order for Eqn. 2.37 to be true for bounded, non-zero stresses,

Eqn. 2.39 (except for a33) suggest that:

a.. ~ (1-t9H1/2 (2.41)

i) !

or

&~ 1-tHY2 (2.42)

Therefore if the crack shape is chosen in the form
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£ = Co(l-t2 /4, | (2.43)

convergence will be good for Itl ¢ 1. Rice [2] made this point. Any
other crack shape will impose either unbounded or zero endpoint
behavior on the net ligament stresses and the solution will not
converge at the endpoints in a satisfactory manner. If one considers
the semi-ellipse for example, g, will be of the order (1-'02)—1/2 as

It| approaches 1.

There is one exception. In the case of @zq in Eqn. 2.37 the
stress 0, will be zero. This should be expected because the assumed
form of the out-of-plane shear stress is parabolic, i.e. zero at the
surface of the shell. Therefore as the crack depth goes to zero so
does 0g.

It should be pointed out that regardless of what form of the
crack is chosen, satisfactory convergence can be obtained in the
central portion where the line-spring model is most applicable. The
results in this dissertation were thus obtained for the semi-ellipse.
But if a solution is desired for (-1,1), it is necessary to have the
crack shape at the ends asymptotically behave like Eqn. 2.43. A
procedure to get this function utilizes a simple expansion about zero

and for some typical shapes is as follows. Let
_ 2.\n
§= &y (1-t7) (2.44)

be the desired shape. Note that a rectangle is given by n=0, and a

semi-ellipse results from n=1/2. Next we write

£ =& (149" = €o (1-t5H V4 1) (2.45)
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where
onijs. X g
g(t) ~ (1-t%) > %ait . (2.46)
1=

M is chosen so that an adequate representation of the crack fromnt is

given over most of the domain, and the coefficients a;, are given as

follows,
2 = 1
a; = -(n-1/4)
(-8 [(a-1/)-1]
2 2!
ag = - (n—1/4)I(n-lﬁ)—llf(n—l/q-zl et (2.47)

The convergence of Eqn. 2.46 is demonstrated for n=0 and n=1/2 in
tables 2.1,2, respectively. Stress intensity factor results of Eqns.
2.6,7 for the crack shapes in these tables are given in tables 2.3-6.
The stress intensity factors in Eqgns. 2.9-11 are normalized with
respect to the value of K from Eqn. 2.8 for £ in the center of the
crack and for the corresponding loading, see section C.4 6f Appendix
C. This technique however, is of limited use.

Semi-elliptic crack shapes are chosen for most mode 1 analysis
because of their general resemblance to surface cracks. Most
experiments however show that cracks grown by fatigue tend to have a
blunter shape at the ends, see for example [55,71]. Note that the 1/4

power represents this better than 1/2.
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One further point to make before concluding this chapter is that
for small ¢ the inverse of the B matrix (Egn. 2.29) is singular and

the asymptotic behavior of relations 2.32 is of the form,
-4 -3 '
7ij = (constant) £ ~ + 0(§ 7) . (2.48)

bThe constants are defined in Appendix F. It would seem that the
contribution of the stress terms (Eqn. 2.31) for the case of a semi-
ellipse where u~§~(1—t2)1/2 would be unbounded and to the -3/2 power
rather than -1/2 as predicted by Eqn. 2.37. However when the terms of
Eqn. 2.31 are combined, the two leading order terms cancel and we are

left with the singular nature predicted by Eqn. 2.37, see Appendix F.
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Table 2.1 Crack profiles approximating a constant
depth using Eqns. 2.46,47.

Rectangular Profile (£ = .6)

M 1 3 5 10 20 exact
t
.0 .6000 .6000 .6000 .6000 .6000 .6000
.1 .5985 .6000 .6000 .6000 .6000 .6000
.2 .5939 .6000 .6000 .6000 .6000 .6000
.3 .5860 .6000 .6000 .6000 .6000 .6000
.4 .5744 .5997 .6000 .6000 .6000 .6000
.5 .5584 .5987 .5999 .6000 .6000 .6000
.6 .5367 .5958 .5996 .6000 .6000 .6000
.7 .5070 .5882 .5880 .6000 .6000 .6000
.8 .4648 .5689 .5906 .5993 .6000 .6000
.9 .3961 .5170 .5579 .5900 .5892 .6000
.95 .3353 .4536 .5037 .5585 .5888 .6000
.98 .2677 .3705 .4200 .4862 .5440 .6000

Table 2.2 Crack profiles approximating a semi-
ellipse using Eqns. 2.46,47.

1/2

Semi-Elliptic profile, (£ = .6(1-t2) )

M 1 3 5 10 - 20 exact
t
.0 .6000 .6000 .6000 .6000 .6000 .6000
.1 .5985 .5970 .5970 .5970 .5970 .5970
.2 .5939 .5879 .5879 .5879 .5879 .5879
.3 .5860 .5724 .5724 .5724 .5724 .5724
.4 .5744 .5501 .5499 .5499 .5499 .5499
.5 .5584 .5202 .5196 .5196 .5196 .5196
.6 . .b367 .4818 .4801 .4800 .4800 .4800
7 5070 .4335 .4292 4285 .4285 .4285
.8 .4648 .3726 .3630 .3601 .3600 .3600
.9 .3961 .2915 .2736 .2636 .2617 .2615
.95 .3353 .2304 .2122 .1954 .1888 .1873
.98 .2677 .1802 .1587 .1387 .1267 .1194
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Table 2.3 Normalized stress intensity factors for
the crack profiles given in table 2.1 for applied
tension.

Rectangular Profile (¢ = .6), Tension
M 1 3 5 10 20 ®

.258 .271 .272 .273 .273 .273
.258 .270 .272 .272 .272 .273
.256 .268 .269 .270 .270 .270
.253 .263 .265 .265 .266 .266
.249 .256 .258 .259 .259 .259
.243 .246 .250 .249 .249 .250
.236 .235 .237 .238 .238 .239
.225 .219 .220 .221 .222 .222
.210 .199 .197 .197 .198 .199
.185 .172 .166 .161 .161 .163
.95 .163 .151 .145 .136 .130 .132
8 .138 .128 .124 .117 .107 .098

DOWOTDUTA W Ot

Table 2.4 Normalized stress intensity factors for
the crack profiles given in table 2.1 for pure
bending.

Rectangular Profile (£ = .6), Bending

M1 3 5 10 20 ®

t

.0 .144 .152 .153 .153 .153 .153
1 .145 .151 .152 .152 .152 .152
.2 146 .148 .149 .149 .149 .149
.3 .148 .144 .144 .145 .145 .145
.4 .151 .136 .137 .137 .137 .137
.5 .154 .126 .126 .126 .126 .128
.6 .158 .116 .114 .114 .114 .114
.7 .162 .103 .097 .958 .096 .096
.8 .165 .093 .077 .071 .071 .071
.9 .166 .087 .060 .040 .034 .033
.95 .161 .089 .060 .029 .012 .006
.98 .150 .091 .066 .034 .009 -.013
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Table 2.5 Normalized stress intensity factors for
the crack profiles given in table 2.2 for applied
tension.

Semi-elliptic Profile (§0 = .6), Tension

M1 3 5 10 20 ®

.258 .246 .245 .245 .244 .244
.258 .246 .245 .244 .244 .244
.256 .245 .244 .243 .243 .243
.253 .243 .243 .242 .242 .242
.249 .241 .240 .240 .239 .239
.243 .238 .236 .236 .236 .236
.236 .234 .232 .231 .231 .231
.225 .228 .226 .225 .225 .225
.210 .218 .218 .217 .217 .217
.185 .201 .206 .208 .208 .207
.95 .163 .184 .193 .201 .204 .203
.98 .138 .162 .173 .189 .200 .205

WoOTDN AR WN = Ot

Table 2.6 Normalized stress intensity factors for
the crack profiles given 1in table 2.2 for pure
bending.

Semi-elliptic Profile (£, = .6), Bending

M1 3 5 10 20 w

t

.0 .144 .135 .134 .133 .133 .133
.1 .145 .136 .135 .135 .135 .134
.2 .146 .141 .140 .139 .139 .139
.3 148 .149 .148 .147 .147 .147
.4 .151 .160 .159 .158 .158 .158
.5 .154 .176 .175 .174 .174 .172
.6 .158 .191 .180 .189 .189 .189
.7 .162 .209 .210 .209 .209 .208
.8 .165 .227 .233 .233 .232 .231
.9 .166 .239 .253 .261 .261 .259
.95 .161 .236 .257 .274 .281 .280
.98 .150 .219 .244 .273 .293 .302
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Figure 2.1 The shell geometry.
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Figure 2.2 Representation of the two-dimensional
stress state in the net ligament with stress
resultants for the mode 1 problem.
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Figure 2.3a Force and Displacement quantities as
defined by plate or shell theory that are used in
the mode 1 line-spring model.
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Figure 2.3b Force and Displacement quantities as
defined by plate or shell theory that are used by
the line-spring model for mode 2 loading.
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Figure 2.3c Force and Displacement quantities as
defined by plate or shell theory that are used by
the line-spring model for mode 3 loading.




Figure 2.4 The superposition used to solve part-
through crack problems with the line-spring model.
All solutions are obtained for the problem in the
lower right (the perturbation problem) where the
only loads are applied to the crack surfaces.
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Figure 2.5 The corresponding plane strain problem.
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CHAPTER 3

Through Cracks in Plates

In this chapter the singular integral equations for a cracked
plate under both symmetric (mode 1) and skew-symmetric (modes 2,3)
loadings will be derived. The plate theory includes transverse shear
deformation. For mode 1 loading there is very little-to add to the
existing literature [6,9-13]. The thin plate limit examined in these
papers will be reconsidered. For the skew-symmetric case stress
intensity factor solutions found in Refs. [14,15] for a single crack
will be supplemented. Also some results for the double crack case

will be presented.

3.1 Formulation
The governing equations, both dimensional (Eqns. 3.1la-16a, 18a,

18a) and non-dimensional (Egns. 3.1b-16b,18b,19b) are listed below.

The dimensional relationships are defined in Appendix A. From
equilibrium .
oN oN oN oN
11 12 _ XX Xy _
3. "o, =9 v Tox ‘dy -0 (3.1a,b)
1 2
oN oN oN oN
12, 22_, X, _Y¥_go | (3.2a,b)
axl 6x2 ' Bx Oy
ov ov
1 2 -
5‘;1'+5;;+q(x1,x2) =0 ,
ov

a—x— + dy 5 q(x)}') =0 , (3-3a)b)



1 12 _
axl * 3x2 - vl =0,
oM oM
XX Xy 5 _
3y 3y ~ 12(1+0) Vx =0 , (3.4a,b)
8M12 BM22
ox. & Ox. v2 =0 ,
1 2
aux oM 5
-5;1 + —5§1 " 12(10) Vy =0 , (3.5a,b)

where q(x,y) is normal loading to the plate surface. The other
variables are standard plate quantities (see Fig. 2.3). From

kinematical considerations,

€n = ::in » Cyx T %ﬁ B (3.6a,b)
€99 = g—z—g ) eyy = g—; ) (3.7a,b)
b N 11 251 - I
6, g:ib “ By, 8, = %3 c B, (3.9a,b)
6, = g;ig + By b By = %; B, (3.10a,b)

where 01 and 62 are the total rotations of the normals. For classical
plate thecory they are zero showing that normals to the plate surface
stay normal, i.e. there is no deformation transversely. The

constitutive relations (Hooke’s law) are,
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1 ) .
hepy =g (Njp - WNyo) e = Ny~ N (3.11a,b)
_1 ) .
he22 T E (N22 VN11) ) fyy = Nyy VNXX ) (3.12a,b)
W _
hejg =2z Mg+ €y = (IN, (3.13a,b)

where E is Young’s modulus and v is Poisson’s ratio. From plate

bending,
apl 6p2
Mgy =D |3 * V. |
X o
op ap
Mx = 1 2 ) % Va . ] ) (3.14a,b)
> o204 X y
op 0p
Myg =D 5‘2 + Vs;l ] ,
x2 1
op 8p
= —5 | g 5y ] , (3.15a,b)
YVoo12(1-0%) y
y b [ gy
1277 2 lox, "Ax ]
0p, 0p
- 1 x 'y ]
Mxy “24(1w) L By T dx ) (3.16a,b)
where,
3
b=—" 2 (3.17)
12(1-v7)
The linear transverse shear stress-strain relationships are,
1
b= %1 > %=V > (3.18a,b)
_ 1 B
b2=18 Y2 ey =V (3.192,b)
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where

5E

B- 1200

From here on only the non-dimensional variables will be used.

¢(x,y) such that

2 2 2
O 7 R 7 S ' B
XX ay2 * yy ax2 T Ty Ox0y ’

(3.20)

Define

(3.21)

and Eqns. 3.1b,2b are satisfied. Next combine Egns. 3.6b,7b with

3.11b,12b to obtain,

duo_ N N, TN -
Ox XX vy Oy yy XX
Next use Egqns. 3.8b,13b to write,
_1[3u oy ]
(]+U)ny -2 | 0y * dx !
or
2 3 3
0 _1 [ 0 u 0 v
(1+V)6x3nyy -2 *

6x6y2 ay6x2

After substituting 3.22 into 3.24 we obtain,

52 . 32Nxx 2N
(1+V)6x6nyy -2 {[ 6y2 - ay2 ] *
32N 32N
[ = - v}
2 2
Ox Ox
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(3.22)

(3.23)

(3.24)

(3.25)

(3.26)




Next using 3.3b-5b we can write,

32 3%
XX

+ 9 Xy

a2
YY

ax2 . OxOy

+—5 +axy) =0

Oy

Substitute Eqns. 3.14b-16b into 3.28 to obtain,

3 3
AL

3
0py

a3p

+

ax>  dx2dy

Look at the following expression

3.29,

3 2 X 4 12(1“V)2q(x;Y) =0
Oy Oy “Ox

3 3
) px . 0 EX
6x3 6x26y

Substitute for px

3.18b,19b,
3 3
0 G
P 2F
6x3 axzay

Next use Egns. 3.3b

3

0

ALY
x2 Ox Oy

(3.27)

(3.28)

(3.29)

from the first two terms of Eqn.

(3.30)

and ﬂy according to Eqns. 3.9b,10b together with

2O g M )
ax2 0x ax2 oy 6y2

(3.31)

and 3.27 for substitution into 3.31 to obtain,

3
G} px . 0 é!
6x3 axzay

Similarly,

3 3
0py  Ohy

2
0 12(1+v) _ g2
.2 [ g a(x,y) - V' ]

By3 6y26x

Eqns. 3.32,33 are now substituted back into Eqn. 3.29 to obtain,

2

A 12 2

0 [ 124 qu,y) - vPw |
Oy

vhe = { 2209 92 4 1207 Jatx,y)
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(3.32)

(3.33)

(3.34)



3.9b to write,

+ =
X Ox

dw 1 {12(1+u)

2 1+v
Vg +
12(1-12 ¢ ° X

| Similar substitutions with Egn. 3.5b leads to,

dw 1 (12(1+V) o2, 1+ B
g+ vip . LYo
y y 12(1_V)2 { 5 y 2 ax[

After defining the constants,

1 1

E=Tmq N T 9
5(1-v) 12(1_1j2)

and the new unknowns,

8p, op
- _x __¥
n(x’Y) = ¥y dx ’

o, 9p
¢(X)Y) =K 5;5 + 6;1 ] -w o,

Eqns. 3.26,34,35,36 become,

-0

ve=0 ,

- -w=0 ,
- ) W27 =0

ay

36 Bp
il
op, op
5 o )

(3.

(3.

(3.

(3.
(3.
(3.

(3.

Next use Egn. 3.4b with substitutions from 3.14b,3.16b and 3.18b with

.35)

.36)

37)

38)

39)

40)
41)
42)

43)

where q(x,y) has been assumed to be zero. To solve Eqns. 3.40-43 we

introduce the Fourier transform,

400

[ #xmet¥ey

#(x,a)

42

(3.

44)




400

p,y) = [ Fewe W

with identical definitions for w(x,y),

making use of the relationships,

2

o]
(V]
!

)
Ox

1l
MI
!
=]
+h

., )
J v f(x,y)elaydy
—-00

4
-— - 2a
Ox Ox

(o)
e lad]

+00 4 .
J v f(x,y)elaydy
—00

Eqns. 3.40-43 are reduced to the

equations,

&
\ ;
R

1
o
1
o

+
R
]
]

(2

Assuming symmetry of

transfofmed solution for x>0 of Eqns. 3.47

p,y) = [ @7 4 Ay @)xe
w(x,y) = %; I [A3(a)e—la|x + A4(a)xe
yoon = = [ {[-A5@ + @lals - x)A,(@) e

43

-50 1is,

~-lalx]

-lalx] -ia
| e Yda

~lalx
+

e ' da

(3.

(3.

(3.

loading and geometry with respect to x,

(3.45)
¢(x,y) and 1(x,y). After
4T (3.46)

following ordinary differential

.47)

48)

49)

50)

the

.51)

.52)



C(a)exp[—x[égzil]1/2]}e_iayda ) (3.53)

K

+00 .

00,y = 5 [ Ag@e™ e aa (3.59)
—00

where
1/2
I e 2 .
= [ iy . (3.55)

For either the symmetric or the skew-symmetric problem there are five
conditions with which to determine six constants, Ai(a), i=1,...,5,
and C(a). This shows that one constant is extra and we take

Ca) =0 , (3.56)
and proceed to show that the problem can be uniquely solved without
it. Now that the four unknowns, w;¢,f, and I are known in terms of
the five unknown coefficients, the other plate variables are expressed
in terms of them. Nxx’ Nyy’ and ny are already expressed in this

form in Bqn. 3.21. The other important expressions are,

_ l-von 2y :
px =F2 3y Tax ) | (3.57)
_ v o0 2y
ﬂy = K3 ax t 3y (3.58)
2 .2 2 2
_ 1-v 0’0 07y R :
xx =1 { 2 3xdy ax2 ¥ ay2 ) ! (3.59)
2 .2 2 2
_ (1-v)” 9871t 087y o’y
Myy =17 { 2 Ox0y ayZ * bax2 } ! (3.60)
2 2 2
1 [lv[B3Q 021 0¥y
Mxy T 24(1+v) {ﬁ 2 [ 2 .2 ] * Zaxay } ’ (3.61)
dy dx :
_ 8w 1-v 00 3y
VTt Mo ay tae (3.62)
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w100 By

v, = 35y 5 ox oy (3.63)
L a2 3 N3

&y, -(2+u)—¢—a2 e (3.64)

Oy 0y O0x Ox

2

ov 0

- (3.65)

Oy ax 8y2 '

Now if Eqns. 3.51-54 are substituted into Egns. 3.21,57-65 the result

is,
+00 »
1 2 -lalx -ia
= [_wa [A(@) + xay@]e %1 4p (3.66)
N = L J+w[a2A (a) + A (a)(tzzx-ZIaI)]e_Ialxe—my da (3.67)
Tl I L 2(@)( , 67
=i J+wa[—la|A (@) + (1-xlal)Ay(@)]e™ ' *e 1% dg (3.68)
xy 27) 1 2 ! )
1 -V -i o -Rx -ia
ﬁx = K5 3y I-waAs(a)e e *da +
1 *“[ 2 -lalx_-iay
L j-w lalAy(a)- (20% xlals)A,(@]e % P, (3.69)

_ l -v 1 x -iay .
g, = 5 5 j RAg (a)e” da

%?'J+w“[‘A3(“) ¢ @ik - DA, @] e, (3.70)

+00

i =L [ {ave?|(@stal-n ) - A (@)] +

2alh,(a) e *%e 3% da
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+00

K 2 i -Rx_-iay
4 %—(l-u) 5% J-maRAs(a)e X 1Y 4o (3.71)

+00

Myy = %% [ {(lﬁp)a2[(2m|al—x)A4(a) - As(a)] +

2u|a|A4(a)}e"“'xe‘i“Y da -

+00

- Fan; J “RAs(“)e-Rxe-lay da , (3.72)
-~ 00
1 0 _ .
Mxy = -7(1—V)§% j a[(xlal—2ma -l)A4(a) + |a|A3(a)]e—la|xe—1ay da
' ~00
’%ﬁ(l—y)2§l J+m(a2+R2)A (a)e—Rxe-iay da (3.73)
T 5
+00
K 2 -lalx -i
Ve ® r J-wa A (a)e @1Xe718Y gq -
K i (™ Rx -ia
- 5(1-V)52 I aA_(a e Xt Y da , 3.74
2 2r ) 5 ) (3.74)
g (7 lal i
Y. -lalx -iay
Vy = 11 I_walalA4(a)e e da +
+00 .
+ %(1'V)%; J RAS(a)e_Rxe_my da , (3.75)
-00
62u 1 +w2 l .
5“ = E;J a [-(1+V)lalA1(a) + A2(a)(-1+u-|a|x(1+u))]e‘ 21X, "12Y 4o
' - (3.76)
v 1 (™ 2 | .
dy T or [ [ame®a (@) + ay(0) (-2lalxa® v Je7! ¢ Xe iV da
- (3.77)
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3.2 Symmetric loading, Mode 1.

The symmetry conditions are,

ny(O)Y) =0 , (3'
Mxy(OJY) =0 , (3'
Vx(O,y) =0 . (3.

After using this information in Eqns. 3.68,73,74 we obtain

1

Al(a) = Tal A2(a) ) (3.
2 2 |
M) = HEIL @) 3.
A(a) = 381 4 () . 3.
5 1-v "4

This eliminates three of the five unknown constants leaving only A2

78)
79)

80)

81)

82)

83)

(2)

and A4(a). The following two mixed boundary conditions will determine

them.
Nxx(o*,y) =-f,0y) , yink , (3.
u(0+,y) =0 , y outside of Ln , (3.
Mxx(0+,y) = —f2(y) , ¥y in Ln , (3.
px(o*,y) =0 , youtsideof L, (3.

where
Ln = (al,bl), (a2,b2), cee (an,bn) , (3.

each section (ai’bi) defining a crack on x=0. Note that since

[v
1N
~—

86)

87)

88)

all

length quantities are normalized with respect to the plate thickness

h, each section is actually (ai/h’bi/h)' After using Eqns. 3.81-83 in
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Eqns. 3.66,76,71 and 69 we obtain the following,
lim -1 -lalx _-ia
N (0,) = xig ) |aIA p(@)e alxe"14Y 4o (3.89)
2 lim - ~lalx -iay
3 = 450 2 I 2A (a)a e da , (3.90)
Oy~ x=0
_ lim 1&(1 V) J {[ _a (3+v) ] -lalx
Mxx(o’Y) ~ x40 2a”lal+ Ialn(l -v)
- 2a2Re‘Rx} A4(a)e'iay da , (3.91)
lim -1 2 -Rx 2 .2, -lalx} -iay
5,(0,y) = s (2) [260%e P* 5 (a%R%)e Jei® da .
X"O 2, _o 4 (3.92)

Note that Eaqns.

the mixed boundary conditions 3.84,86.

3.2.1 Tension.

3.89,90 are uncoupled from 3.91,92 for simple fi(Y) in

The singular integral equation for tension will be derived first.

Consider Eqn. 3.90.
2 +00 .
Q—%I = %; J —21&2(11)a2e—my da
Oy" x=0 -
From Eqns. 3.44,45 we invert 3.93,
+0 .2 .
—2a2A2(a) = J 0 ; e %4t )
-o 9t” x=0
and then integrate by parts twice
infinity.
+00 .
—2a2A (a) = -ia J du 1%ty
2 w0 Ot
- x=0
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(3.93)

(3.94)

noting that u(t) 1is zero at

(3.95)




= [ uw)e®™at (3.96)
or
A = 2 [ el e (3.97)
2 2 L
n
where use has been made of Eqn. 3.85. Now Az(a) is substituted into
Eqn. 3.89 and the displacement u(t) becomes the only unknown in the

problem. After defining

u (t) = u(t)

we have,
lim -1 (*lal iat lalx -ia
im - 1l - X -1
N_(0,y) = 1in -1 J_mT JL o, (1)l 712Xy (3.08)
n
or
lim -1 **lal -lalx_ia(t-y)
im - - 1 -
N (0,y) = lin - jL ul(t)I_w—é—e Ixe da dt .  (3.99)
n
Next using
lin (*° —ax, _ _ -2
<30 acosa(t-y)e da = 5 (3.100)
0 (t-y)
Eqn. 3.99 becomes,
1 ul(t)
N Oy = L LS4, ferally (3.101)
L_(t-y)
n
or
1 uy (t) |
1) =24 dt , foryinL_ . (3.102)
1 27 L 2 n
L (8Y)
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For a single crack in tension Eqn. 3.102 becomes,

p 2 ) % Ryo9
5;¥ ———édt:fl(Y) = XX:F-E——:-E— (3103)
-a (t-y)
The solution is
g, 2 2.1/2
uo =24 @Y (3.104)

1f we substitute this back into Eqn. 3.101, the stress in front of the

crack 1is,
P o 2 2.1/2 ©
1 () 1 *az g (2°-y°) / gt = & { _dyl 1} (3.105)
B o7 E 2 E 2 .2,1/2 ’ ’
-2 Y (t-y) (y"-2%)

To determine the stress intensity factor, we use Egn. G.10,

k= n 26-91Y%0, 0 (3.106)
.o 1/2
_lim _oy[2(y-a)] _®
= yoa (y+a)1/2(y-a)1/2 =0 la . (3.107)
Therefore
ky
- =1 . (3.108)
o {a”

Now determine the stress intensity factor using Eqn. G.11.

ot lin ™ B, § @2HAYE e (3.109)
1" Klya gy 22 F g

where the following substitutions have been made,

X 3-v E

= 1+U , /‘ = m (3.110)

Therefore using either stress or displacement the result is the same.

This should not be taken for granted because the equations predicting
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stress and displacement are {rowm plate theory, while the stress
intensity factor is defined in terms of elasticity theory. It is
important to note that the classical plate theory is identical to
Reissner’s theory for tension, Eqn. 3.101.

In Fig. 3.1a at the end of the chapter the stress intensity
factors for two identical cracks with a/h=1 are plotted for varying

separation distance. ‘

3.2.2 Bending.
For the bending problem from Eqn. 3.91

1 (77 2 22, -ia
B(0,) = uy(y) = = I_wA4(a)n(a R%)e 1 W4q | (3.111)
After inversion, making use of Eqn. 3.55, A4(a) in terms of the new
unknown, u2(t) is,

1- iat
A (e) = LE IL uy(t)et %t . (3.112)

n

This is substituted into Eqn. 3.91,

(0 y) = 11m 1&(1 V) I 2(t)J {[Za lal+ a _a (3+v) ] -lalx

lale(1-v)
- 20%Re RX} 125V g gy (3.113)
After using Eqn. 3.100 and the following integrals,

. +00
113 I a3cosa(t-y)e *da = — i (3.114)
7 o (t-y)

. +0
18 [ oZRe M cosa(toy) da = —L—{1[k, (pIe-y1)-
X 0 27x (1-v)
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Ko(Blt-yl)] + 1220=L) U= (3.115)

(t- y)
where
- (e V2 o/ 5
p = m_u)] = o)t/ (3.116)
we obtain
1 127 (1- VL 1(1-v) (3+g)
0,y) = 537 ] ugylt)
7 2 ¢ (t-* (t-y)?
41 K2(plt—y|)—Ko(ﬁ|t—yl)] R l%z{ijgle(ﬁlt—yl)}dt , (3.117)

which 1is valid for all y. K2 and Ko are modified Bessel functions of

the second kind. If y is in Ln’ we use Eqn. 3.87 to write,

(1 ) u2 (t) _1_.
-1,(y) = 1557 o dt + = fL 1y (8)Kpy(y,8) dt , (3.118)

n

where

Kpp(,8) = Hn(preyn) « {1824 _ 120 Sl piey)-
(e (t-y)

Ko(plt-yl)] ——lil—ZIK L(Blt-y1) - Tn(pie- ) B (3.119)

It is convenient to write this Fredholm kernel in terms of a single

variable,
5K ‘
22()’:t) = Ti_({‘%j , 2z = fplt-yl , (3.120)
where
_ (=48 L 4 24
K(z) = { 4 + i 4K (z) + 4Ky (z) + 2 Kz(z)} . (3.121)
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To show that K(z) is a Fredholm kernel, the small z expansions for the

Beésel functions are,
K (2) ~ -In(2/2) - 7, - (2/2)%1n(z/2) + 0(z2) . (3.122)
Ky() ~ 2/z° -1/2 -1/2(3/2)°1n(2/2) - 1/2(2/2)°(7_+5/4)

- 1/6(z/2)%1n(2/2) + 0(zY) (3.123)
where Euler’s constant, Te = .5772157.... Substitution of these
expansions into Eqn. 3.121 leads to the following behavior for K(z),

N8 k() ~ {1n(2/2)+ (1,-23/0)+ (2/9)*1n(2/2)+. .} - (3.124)

For simple plate bending,

=3
Q8

S -1
o =l =5

(3.125)

Sl
[S](X)

The log singularity has been separated from the Fredholm kernel,
see Eqn. 3.119. In such a case it was found helpful to handle this
. part in closed form. However it is possible that the contribution of
the log term is nearly equal to, but of opposite sign as the rest of
the kernel. Separate treatment here could lead to convergence
problems especially for geometries (a/h approaching ® for Eqn. 3.118)
where the coefficient of the log term gets large. In many problems
this coefficient is small and a closed form analysis of the log is not
necessary. See Appehdix I for the effect of this log behavior on the
numericﬁl convergence. It should be noted that if the unknown were

the derivative of the rotation, this log term would be replaced by,

(t-y)In(flt-yl) , (3.126)
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which is non-singular and easier to integrate (see. Appendix I). This
is the least desirable feature of the strongly singular formulation.
The Fredholm kernel is essentially divided by (t-y), or alternatively,
the infinite integrals which determine the Fredholm kernel decay more
slowly by a factor of a, see Appendix J, section 4. This means more
asymptotic analysis for equal decay between the two methods. For
example the infinite integral for the tension problem, Eqn. 3.100

would be replaced by,

13 e -a 1 :
xig Jo sina(t-y)e Xda = Ty (3.127)

In most problems the infinite integrals must be evaluated numerically

so this factor of a becomes important, see Chapter 5.

For a single crack of half length a, Eqn. 3.118 may be written as

1 u,(3r) +1
h (7 Y2'%h a1 a_\y 2 _
24ar 7 I * ToR(10) 27 J iy (ErIK(Rplr-sl) dr = —ﬁxx’
-1 (r-s) -1
~1<s<1 . (3.128)
If we define
wt) =220 g = 2f1r-sl = 5 = flt-yl (3.129)
2 h xx & ! h y ! )
the equation becomes,
1 §+1 —&(r) 4 5 _(a/h 2I+1 K(¢) dt = -1 3.130)
771 )2 T+ ey /D) _lg(r) (s = -1, 3.

This equation must be solved numerically, see Appendix E for an
explanation of the collocation method. From section 2 of Appendix G,
and Eqn. 3.130 the stress intensity factor (actually the maximum value

at the plate surface) will be given by,
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= £(1) = £(-1) , (3.131)

5]

where

g(r) = £(r) 1-rD)}/2

The stress intensity factor of Eqn. 3.131 is predicted by either

, -1¢rs1 . (3.132)

stresses (Eqn. G.10) or displacements (Egqn. G.11).

The governing equations for classical plate bending are identical
to 311—20 with the exception that the transverse shear deformation, .
Bi in Egns. 3.18,19 are zero, or B (Eqn. 3.20) is infinite. The
symmetry conditions, Egns. 3.78-80, cannot be separately satisfied.

For classical plate bending,

ny(O,y) =0 , (3.133)
oM
—5§1 +V (0,y) =0 . (3.134)

The result of this formulation for the determination of the rotation

is,

e =l , -wsa (3.135)

or in terms of g(r),

+1
3+v 1 £&(r)_ dt = -1 . (3.136)
1+v 7 2

-1 (r-s)

This equation can be solved in closed form.

277 72 Iyl -1}, (3.137)
6E = GE { 2 (a/m) 2] /2 }
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Q8

uy(y) = éiz 2%2 8E |1 - [Ey]Q ,  -a/h<y<a/h . (3.138)
Eqn. 3.137 predicts

mkl =1, (3.139)

asz"

while Eqn. 3.138 predicts

kl 1+
=7 - . (3.140)
?QIZ" 3+v

This inconsistency shows that the classical plate theory is inadequate
to solve for crack tip SIFs for bending. It is also true for out-of -
plane shear and for twisting.

In Fig. 3.2 the normalized stress intensity factor as a function
of crack length to plate thickness ratio is plotted for Reissner’s
theory. Table 3.1 lists some values. Note that for large h/a the
limit is one, the same as the classical prediction using the stress
intensity factor defined in terms of stress, Eqn. 3.139. The other
limit, the thin plate limit, is not so clear. It has been reported by
[6] that in the limit as h/a goes to zero, the stress intensity factor
for the Reissner plafe, (Eqn. 3.131) approaches the value (1+v) / (3+v)
as predicted by Eqn. 3.140 from the classical theory, (note that h=0
is not valid for Reissner’s theory). Another way of putting this is
that Eqn. 3.130 becomes 3.136. The evidence provided by table 3.1 for
a/h = 1000 seems to indicate that this is not the case. Numerically
it is very difficult to obtain convergent results in the long

crack/thin plate domain using the methods of Appendix E, and for
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further results some kind of asymptotic analysis with a specially
suited numerical scheme seems appropriate. As an aside, for this
geometry, a power series (Eqn. E.29) was not adequate using single

precision (14 digits). The coefficients were as high as 1.X1015

, for
example see table E.1. The problem was solved using Chebychev
polynomials. The following analysis is pfovided to support the claim

that the curve in Fig. 3.2 does not "reach" the value (1+v)/(3+V).

3.2.3 Thin Plate Bending.

We consider the large a/h limit of Egn. 3.130. Only the Fredholm

kernel need be analyzed. First define

+]1
I(s,2/8) = 7y (/02 | BEK() &

= 21(1+V) I g(r K(¢) dr , (3.141)
where p=f(a/h) is introduced for convenience. From Appendix H,
1
lim ) i} { g_(_1

prm I(s,a/h) = l(1+u) " ) dr = r(1+u) dr ,Islq1,

r-s (3.142)
2 (! () +lg_i_l

= m I 1 ( ) dI‘ = '(1+V) J dr ) |S|>1 N
s (3.143)
=? ,y "near" 1, ie. p(1-y) = 0(1) . (3.144)

If Eqn. 3.142 were valid for Isl=h/alyl<l then in the limit as p
approaches infinity, Egn. 3.130 would be identical to Eqn. 136 and
therefore the stress intensity factor would be (1+v)/(3+v). But this

is not the case. Figs. 3.3a-c compare I(s,a/h) to the limiting
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integrals above. The numerically determined function for g(r) was
used to compute these 1integrals. See Figs. 3.4-5 for plots of
g(r),f(r) as defined in Eqn. 3.132, and Fig. 3.6 for the ratio of g(0)
from Reissner’s theory to g(0) from the classical theory. Also see
table 3.2 for numerical values of this ratio. This table shows that
in the 1limit as h+0, Reissner’s theory behaves like the classical
theory away from the crack tip. With regard to Fig. 3.3, the distinct
difference between I(s,a/h) and the limiting integrals is that
I(s,a/h) is continuous at s=1. The "spike" created when I(s,a/h) goes.
from 17 to 17 gives a contribution to the stress intensity factor that
pakes it different from (1+v)/(3+v). This contribution is of
significance because it is located at the crack tip. In order to
proceed further in the analysis, the area of the spike, which would
represent a normalized force (or couple), must be determined.

Consider the following:

M=o Id{ - I(s,a/h) + 32 } d (3.145)
T opre 0 27 (1+v) S,a 3+y S, .
: 2 +1 +1
_ lim p 2
= pew 27 (1+0) I g(r) J K(¢)ds dr + 375 (3.146)
-1 0
, 1
Jdim__p [ 216 4 8 2 )
“pre 27 (1) _1g(r){ 37U Ky} dr + 3% v=p(1r)

(3.147)
Again the behavior of this integral near r=1 makes it difficult to
analyze. Note that the order one contribution to M coming from the

"outer solution" of g(r), Egqns. 3.129,138, drops out.
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The 1limiting value of the stress intensity factor was not found
but we can make the following conclusion. Since I(s,a/h) for Isl>1
has the behavior of Eqn. 3.143,

lim lim 1
prw sa1* 1(s:2/B) ~ o= (3.148)

where from Eqn. 3.143, it may be stated that

lim 13
pom sa1* 1(5:2/0) ~ 1o | (3.149)

This order analysis is supported by Fig. 3.3. This tells us that the
magnitude of the integrated Fredholm kernel, i.e. I(s,a/h), which
represents a normalized stress resultant term, (actually a couple),
becomes infinite according to Eqn. 3.149. Again since we are dealing
with a region where p(l1-s) is of order one, the "thickness" or support
of the spike is of order (1-s) or p-l. Therefore the area under the
spike, given by eqn 3.147, which represents normalized force, should

-1/2

go to zero as §p In order to determine the stress intensity

actor for h/a approaching zero the coefficient of this leading order
term must be known. If the area were of order one, the contribution
to the stress intensity factor would be of order (l—s)_l/z, see Sih
[72]. If the value of stress resultant were of order one, the area
would be zero and there would be no contribution.“B;t the limit is
between these two cases and the contribution is finite, prébabi&
resulting in a stress intensity factor that can be drawn within the
spéce provided by the lower plot of Fig. 3.2.

Some other results for the bending problem are given at the end of
the chapter. In Fig. 3.7 the normalized bending stresses ahead of the

crack tip are plotted for a/h=1 and 10 (Eqn. 3.117). 1In table 3.3
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some results for crack interaction are listed for four different crack
length ratios, (this table may also be found in [59]). Fig. 3.1
provides a plot of the interaction of equal length cracks where a/h=1
for tension, bending, out-of-plane shear and twisting to compare how
strong the interaction is for the various loadings. In-plane-shear is

jdentical to tension, (shown later in this chapter).

3.3 Skew-Symmetric loading, Modes 2 & 3

The symmetry conditions are

N, (0,y)

o, (3.150)

0 . (3.151)

Mxx(O»Y)
After using this information in Eqns. 3.66,71 we obtain,

Ay(@) =0, (3.152)

: ____Z___} ik,
Ay (@) {2;|a|+(1_y)|aI A(@) + Ea-nraga) (3.153)
This eliminates two of the five unknown constants leaving only

Az(a),A4(a) and A5(a). The following mixed boundary conditions will

determine them.

Vx(0+,y) = -f3(y) , Yy in Ln , (@.1?4)'
w(0',y) =0 , y outside of L_ (3.155)

Ny ©y) = -f,) , yinl (3.156)
v(0',y) =0 , y outside of L, (3.157)

M (0%y) = f5(y) , yinl, (3.158)
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ﬂy(0+,y) =0 , vy outside of Ln (3.159)

If Egns. 3.152,153 are substituted into Egns. 3.52,68,70,73,74 and 77,

the quantities appearing in 3.154-159 may be expressed in terms of the

unknowns as follows:

+00 ’
-K 2 -lalx -3
V. (x,y) == I-ma Ay(@)e @1xe 10V 4

+00

- Ea-st [ aa(@e™e e
—00

(3.160)
_a (" 2
w(x,y) = 27 J_w{A4(a)[2n|al+ (1-v) lal ¥ x]
. Clalx s
e A @R Je !X, (3.161)
i lalx -iay
_ i _ ~lalx,-
Ny 67) = 5 I_wa(l xlal)Ay(a)e X Waa (3.162)
av _ 1 (7 2 2] -lalx_-iay
- I_wAz(a)[a x-2lal+xa®]e # %1y (3.163)
+00
i 2a
N () = -1(1-)g j_w{A4(a)[xaIaI—a+ 2 ]
+ LEanrialag@)e ! X Y da
2 5
+00 .
YR a2 1 2 .2 -Rx_-iay
5123 J_m(a A2 Ag(@)e e Ve (3.164)
+00
_ i 2
Py (xy) = o J_w{A4(“)[** (1+V)|al] *
RETI (a)}e—la|xe-iayda NP J+°RA (@) Pe- 104,
2a 5 2 2r ) 5 3 iss)
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Note that ny is uncoupled from Mxy and Vx' The integral eguation for

ny can be seen to be the same as for tension, compare Eqns. 3.89,90

with 3.162,163. The result for

u (t) = v(0",t) (3.166)
is
u,(t)
N, ©O) = i [ A5, forally | (3.167)
y L_(t-y)
n
or
1 uy (t) ‘ .
-f4(y) = o §L 5 dt , for y in Ln . (3.168)
5 (8Y)
For in-plane-shear,
R, ©
_ _d2 _ 4
f,(y) = ﬁxy % - & (3.169)

All through crack results for tension are also valid for in-plane-

shear. To solve the coupled problem of Mxy and Vx, first define
ug(t) = w(0,t) , ug(t) = B (0,¢) - (3.170)

The unknowns A4(a) and AS(a) can then be expressed as,

A (a) = el [ el et ; (3.171)
L
n

_ _-2ia iat

As(a) ) L u3(t)e dt
n
. [202 " ] [ ugyel® as (3.172)
R Ry ts(®e : '
n
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1t remains only to substitute these expressions into Egqns. 3.160 and
164 and to evaluate the infinite integrals in a way similar to the

bending problem. The equations become,

TV (0,y) = & JL {us(t)[zz%;;ﬁ . K33(z)] ¢ ug (£)Kgg (2) )t

. (3.173)

N O = & jL e [ﬂ——li o Kgs(2)] + vy (6)Kgy(2) Jat boae

where

Kyy(2) = p2{-In(2) + [Ky2) - &5 | + kg « @]}, @.175)
z

o S NN ‘2 17ey
Kas (2) = A{ 37 = 7l v Kola)y (3.176)

Kg5(2) = 12(1+u){ ln(z) + [é% - iﬁ + 4Kpy(z) - 4Ky(2) - f% Ky (2)

+ 1n(@)] - [y + 2] } (3.177)
53(z) = IE?%?;;{ —% [ —]Kz(z) - zKo(z) } . (3.178)

If Eqns. 3.154,158 are applied to 3.173,174 the singular integral

equations become,

2u,(t) ,
L {L 2w L IL {us(t)Kss(z) N u5(t)K35(z)}dt = -£,(y)
n(t—Y) n (3.179)

u. (t)
> g dt + E? JL {“5(t)K55(z) * u3(t)K53(z)}dt

n

2,1
7(1-0%) 52
' 27 §Ln(t—y)

= -1.(y) - (3.180)

The through crack loading for out-of-plane shear is,
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w12l 8(lay) w
00 =V = 5t Y - S o, K (3

and for twisting,

=8
Q8

12

1) =M = 5% = (3

&l
&len

h

=

For small z,
Kyy(2) ~ F2{-1n(z/2)-(1/2 + 1)-3/2(2/2)In(2/2)+...} , @3
Kye (2) ~ ﬂ{—z/21n(z/2)+(9/8—78/2)z—2/3(z/2)31n(z/2)+...} (3

Kes (2) ~ Tiz%:;j{ln(z/2)+(7e+23/4)—(2/2)21n(z/2)+...} @

5

Kes(®) ~ Tariagy (8/D) 1 (2/2)+ (1,/2-9/8)2+2/3(/2) "n(a/2) ..

(3

3.181)

.182)

.183)
.184)

.185)

).

.186)

The effect of this behavior on convergence is shown in Appendix I.

The collocation method was used to solve Egns. 3.179,180
f(y) given by 3.181,182 for a single crack, (tables 3.4-6, see
Ref. [15]), for two identical interacting cracks, (Figs. 3.1c,d)
for two interacting cracks of different size, (table 3.7a,b).

notation for the double crack is given in Fig. 3.8a,b. For a s

with
also
, and

The

ingle

‘crack, the stresses ahead of the crack tip are plotted in Figs.

3.9a,b.
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Table 3.1 The effect of Poisson’s ratio v and
crack length to plate thickness ratio a/h on the
normalized bending stress intensity factor.

See also Figure 3.2. a=6M/h2.

k, (h/2)
o {a

a/h v=0 v=.3 v=.5
.05 .9851 .9885 .9900
.1 .9583 .9676 .9717
.25 .8735 .8992 L9111
.5 .7804 .8193 .8383
. 7020 .7475 L7707
.6518 .6997 .7247
.6211 .6701 .6960
. 6091 .6446 .6847
10. .5984 .6481 .6746
100. .5803 .6306 .6575
200. .6292

1000. .6276

(o 0 N O o
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Table 3.2 The ratio of crack surface rotation for
Reissner’s theory to that of the classical theory
at the center of a cracked plate subjected to
bending, v=.3. See also Figure 3.6.

a/h  fR(0)/p_(0)

40 2.538+ (3+v) / (1+V)
.5 1.892
1.0 1.551
1.5 1.394
2.0 1.309
2.5 1.255
3.0 1.219
4.0 1.172
5.0 1.142
6.0 1.122
7.0 1.107
8.0 1.095
10.0 1.079
100.0 1.011
200.0 1.006
1000.0 1.000

300 1.
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Table 3.3 Bending stress intensity factors for a

plate with two collinear cracks. a=6M/h2, v=.3
b,-a b,-a
17 _ 2 72 .
[a=gt =1 =52 a=ayb, |
" PLATE BENDING

d/a 0.1 0.25 0.5 1 2 ®

c/a
1 .8799 8551  .R313 .B045 .7798  .7475
ky(a;) 0.5 .8071 .7938  .7821 .7698 .7593  .7475
——— 0.25 .7711 7647  .7598 .7551  .7513  .7475
ola 0.1 .7532  .7512  .7500 .7480 .7482  .7475
1 1.294 1.076 .9599 .8697 .8049  .7475
k,(b;) 0.5 1.063 .9143  .8458 .7995 .7698  .7475
- 0.25 .9161 .8220 .7863 .7663 .7550  .7475
ola” 0.1 .8088 .7678 .7563 .7514  .7498  .7475
1 1.284 1.076 .9599  .8697  .8049  .7475
k,(ay) 0.5 1.012 .8405 .7498 .6786  .6261 .5794
—=—=. 0.25 .7990 .6595 .5867  .5297  .4872  .4496
ola 0.1 .5647  .4577  .4037  .3627 .3325  .3060
1 .8799  .8551  .8313 .8045 .7798  .7475
ky(by) 0.5 .7395 .7071 .6771 .6434 .6132 .5794
0.25 .6275 .5867  .5507 .5135  .4816  .4496
ola 0.1 .4817  .4293  .3917 .3577 .3308 .3060
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Table 3.4 The effect of crack length to plate
thickness ratio a/h on the normalized stress
intensity factors for out-of-plane shear and for

twisting. 0,=3V/(2h), 0 =6M/h°, v=.3.

OUT-O0F-PLANE SHEAR TWISTING
ko(h/2)  ka(0) ko(h/2)  kg(0)
035' 031? 051_; 055;
a/h
.01 .0000 1.0009 .9991 -.0000
.05 .0007 1.0138 .9862 -.0003
.1 .0039 1.0398 .9587 -.0018
;25 .0336 1.1402 .8557 -.0121
.5 .1400 1.3223 .7056 -.0359
1.0 .4656 1.6760 .5218 -.0697
1.5 .8510 2.0142 .4186 -.0850
2.0 1.2615 2.3425 .3527 -.0913
3.0 2.1201 2.9800 .2732 -.0934
4.0 3.0067 3.6007 .2268 -.0910
5.0 3.9100 4.2099 .1961 -.0876
6.0 4.8249 4.8107 .1742 -.0840
8.0 6.6784 5.9938 .1448 -.0776
10.0 8.5539 7

.1592 .1257 -.0722
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Table 3.5 The effect of crack length to plate
thickness ratio a/h on the normalized stress
intensity factors for out-of-plane shear and for

twisting. 0,=3V/(2h), 0 =6M/h%, v=0.

OUT-0F-PLANE SHEAR TWISTING

ko(h/2)  k;(0) ky(h/2)  k4(0)
a3fa— 031? 0 51? o 51_;

a/h
.01 . 0000 1.0009 .9989 -.0000
.1 .0039 1.0397 .9471 -.0022
.5 .1368 1.3232 .6530 -.0422
1.0 .4442 1.6831 .4669 -.0770
1.5 .8005 2.0321 .3696 -.0910
2.0 1.1765 2.3739 .3095 -.0959
3.0 1.9578 3.0431 .2388 -.0960
4.0 2.7609 3.6992 .1982 -.0925
5.0 3.5770 4.3463 .1716 -.0883
6.0 4.4022 4.9867 .1527 -.0843
8.0 6.0709  6.2529 - .1274 -.0773
10.0 7.7568 - 7.5048 - .1109 -.0716

69



Table 3.6 The effect of crack length to plate
thickness ratio a/h on the normalized stress
intensity factors for out-of-plane shear and for

twisting. 0,=3V/(2h), 05:6M/h2, y=.5

QUT-0F-PLANE SHEAR , TWISTING

ky(h/2)  ky(0) ky(h/2)  ky(0)
035—' 031'; 051_:; 051‘;

a/h
.01 .0000 1.0009 .9992 -.0000
. | .0039 1.0397 .9640 -.0015
.5 .1414 1.3219 .7326 -.0327
1.0 .4761 1.6725 .5523 -.0655
1.5 .8765 2.0051 .4469 -.0814
2.0 1.3051 2.3263 .3782 -.0884
3.0 2.2049 2.9470 .2939 -.0916
4.0 3.1364 3.5486 .2441 -.0899
5.0 4.0870 4.1372 L2111 -.0869
6.0 5.0506 4.7164 .1874 -.0836
8.0 7.0049 _5:8542 : - .1b55 -.0775
10.0 8.9840 6.9720 1348 -.0724
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Table 3.7a Stress intensity factors for a plate
with two collinear cracks subjected to out-of-
plane shear loading. ¢ = 3V/(2h), v=.3.
b,-a b,-a
171 _ 272 .
[a =1, ¢ = 2,d—a2b1]
PLATE, OUT-OF-PLANE SHEAR

[\

d/a 0.1 0.25 0.5 1 2 ®
c/a

1 1.763 1.702 1.675 1.669 1.673 1.676

ky(a,;) 0.5 1.736 1.699 1.682 1.675 1.675 1.676
0.25 1.708 1.688 1.679 1.676 1.676 1.676
ola 0.1 1.687 1.680 1.677 1.676 1.676 1.676

1 2.009 2.124 1.812 1.684 1.677 1.676

ky(by) 0.5 2.349 1.906 1.745 1.687 1.677 1.676
0.25 2.028 1.783 1.706 1.680 1.676 1.676
gla 0.1 1.804 1.707 1.684 1.677 1.676 1.676

1 2.909 2.124 1.812 1.694 1.677 1.676

ky(a;) 0.5 1.348 .9231 .7425 .6719 .6613  .6611
0.25 .6723  .4362 .3319 .2908  .2849 2850
ola 0.1 .2835 .1741 .1254 .1065 .1039 1040

1 1.763 1.702 1.675 1.668 1.673 1.676
kg(by) 0.5 .7705 .7059  .6722 .6596 .6598  .6611
=< 0.25 .4039 .3387 .3020 .2863  .2846 2850

ola 0.1 .2015 .1474 .1180 .1056 .1039 1040
{

1 -.5870 -.5348 -.5040 -.4844 - 4730 - 4658
ko(2;) 0.5 -.5214 -.4936 -.4791 -.4711 -.4676 -.4656
< 2 0.25 -.4006 -.4767 -.4703 -.4672 -.4661 -.4656

ola 0.1 _.4731 -.4684 -.4667 -.4659 -.4657 -.4656

1 .0737 .1550 .2512  .3596  .4333 4656
ky(b)) 0.5 .4109 .3945 .4087  .4365 .4573 4656
< - 0.25 .4979  .4566  .4521  .4579  .4635 4656

ola 0.1 .4914  .4677  .4639  .4643  .4653 4656

1 -.0737 -.1550 -.2512 -.3596 -.4333 -.4656
ky(ay) 0.5 .2480 .1600 .0827 .0035 -.0480 -.0700
—“< £ 0.25 .2065 .1438 .0917 .0391 .0056 -.0084

ala 0.1 .1052 .0739 .0483 .0225 .0062 -.0004

1 5879 .5348  .5040 4844  .4739 4656
ky(by) 0.5 2177  .1717 .1352 .1028 .0818  .0700

0.25 1442 .1087 .0748 .0409 .0189  .0084
ola’ 0.1 .0839 .0628 .0419 .0202 .0063  .0004
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Table 3.7b Stress intensity factors for a plate
with two collincar cracks subjected to twisting.

o = 6M/h%, v=.3.
b,-a
_1 1 _ _
[ a-= 5 =1, ¢ = 5 d = 32~b1 ]
PLATE, TWISTING

d/a 0.1 0.25 0.5 1 2 ®
c/a

1 .5058 .5081 .5110  .5147 .5181 .5218
k2(a1) 0.5 .5131 .5144 .5160  .5182 .5200 .5218
—— 0.25 .5183 .5188 .5195 .5204 .5212 .5218
ola 0.1 .5210 .5211 .5213 .5215 .5217 .5218
1 .6748 .5826 .5432 .5239 .5192 .5218
kZ(bl) 0.5 .6526 .5726 .5404 .5252 .5210  .5218
— 0.25 .6104 .5524 .5322 .5238 .5216 .5218
ola’ 0.1 .5590 .5319 .5248 .5224 .5218 .5218
1 .6748 .5826 .5432 .5239 .5192 .5218
kz(az) 0.5 .4484 .3878 .3631 .3521 .3503 .3527
— 0.25 .2737 .2349 .2195  .2130 .2122  .2139
ola’ 0.1 .1269 .1065 .0986 .0955 .0951 .0959
1 .5058 .5081 .5110  .5147 .5181 .5218
k2(b2) 0.5 .3532 .3505  .3490  .3489 .3502  .3527
—— 0.25 .2253 .2184 .2141 .2121 .2123  .2139
oda 0.1 .1105 .1019 .0973  .0953 .0951 .0959
{
1 .1035 .0958 .0877 .0792 .0732 .0697
kB(al) 0.5 .0905 .0856 .0805 .0752 .0716 .0697
—— 0.25 .0792 .0768 .0744 .0720 .0704 .0697
ola 0.1 .0721 .0714 .0708 .0702 .0699 .0697
1 .0054 -.0052 -.0234 -.0462 -.0619 -.0697
k3(b1) 0.5 -.0349 -.0337 -.0424 -.0559 -.0655 -.0697
0.25 -.0605 -.0554 -.0580 -.0638 -.0680 -.0697
oia 0.1 -.0702 -.0668 -.0671 -.0684 -.0693 -.0697
1 -.0054 .0052 .0234 .0462 .0619 .0697
k3(az) 0.5 -.0304 -.0192 -.0073 .0057 .0141 .0179
=2 0.25 -.0266 -.0177 -.0103 -.0032 .0012 .0030
ola 0.1 -.0137 -.0089 -.0054 -.0023 -.0005 .0002
1 -.1035 -.0958 -.0877 -.0792 -.0732 -.0697
k3(b2) 0.5 -.0452 -.0387 -.0320 -.0250 -.0203 -.0179
0.25 -.0221 -.0172 -.0124 -.0076 -.0045 -.0030
ola 0.1 -.0106 -.0076 -.0049 -.0024 -.0008 -.0002
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Figure 3.1a-d Normalized stress intensity factors
in a plate with two identical collinear cracks of
half length a/h=1 loaded in tension (a), bending
(b), out-of-plane shear (c), and twisting (d).

. _ B 2 3 N 2
v=.3, al-Nxx/h, 02-6Mxx/h , 03-3Vx/(2h), a4~6Mxy/h
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Figure 3.2 Normalized stress intensity factors in

a plate for bending, v=.3, o=6Mxx/h2.
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Figure 3.3a-c Plots of the Fredholm integral term
from Reissner’s theory of plate bending (Egns.
3.129, 140) for a/h=10 (a), a/h=100 (b), a/h=1000
(¢), (solid 1lines), compared to the limit from
Appendix E, (dashed lines).
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Figure 3.3 continued.
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a/A=10, 100

-~ ce toal
a [ X ] - 3
N
>
N
o

5. 5 1

v/a

.04 T
“
g8
N
>
N
o

T Classtoal \\\
\\
0.
. 999 7.
y/a '

Figure 3.4 plots of the normalized rotation for
plate bending for a/h=10,100,1000 from Reissner’s
theory compared to classical theory, v=.3,

p(y/a) = (a/h) (3/B) g(y/a).
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Figure 3.5 plots of the normalized rotation
divided by the weight function, [1—(y/a)2]1/2
plate bending for a/h=10,100,1000 from Reissner’s

theory compared to classical theory, v=.3

p(y/a) = (a/h) (O/B)£(y/a) [1- (y/a) 2] 1/2.

for

79



Ueyr(0) fue (0O)

L3

¢:/7t

Figure 3.6 The ratio of crack surface rotation for
Reissner’s theory to that of the classical theory
at the center of a cracked plate subjected to
bending, v=.3. See also Table 3.2.
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Figure 3.7 Bending stresses in front of the crack
tip for a/h=.5,10. v=.3
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(b)

Figure 3.8a,b Geometry of the double crack for (a)
unequal length and (b) equal length cracks.
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Figure 3.9a,b Stresses in front of the crack tip
resulting from out-of-plane shear loading (a), and
from twisting (b). v=.3
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Figure 3.9a,b continued.

84




CHAPTER 4

Part-Through Cracks in Plates

The singular integral equations for part-through crack problems
are obtained directly from the corresponding through crack equations
combined with the compliance relations of Chapter 2. The edge crack
SIFs needed for these relations are deri?ed and presented in Appendix
C. All line-spring model (LSM) solutions presented in this section
are normalized with respect to the edge crack solution for the
corresponding loading and crack depth at the center of the given part-
through crack, see section C.4 of Appendix C.

4.1 Mode 1.

From Eqns. 3.102,118, 2.31, and from the superposition of Fig.

2.4, the integral equations for the symmetrically loaded part-through

crack are,

u, (t) .
%? % : 3 4t - 7339 0) - 199 0) = R =7, (4.1)
L (t-y) |
2 u, (t)
(1-v7) 2 5 1

T )(Ln(t_y)z ¢ * 3w 2r JLnuz(t)K(z) dt

'712“1(}') - 722u2(Y) = 'nx = '32/6 ) (4.2)
where

z = plt“yl ’ (43)
K(z) = {fg : iﬁ - 4K (z) + 4Ky(a) + % Ky(2)} - (4.4)
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‘This problem has already been solved for a Reissner plate [48].
The early line-spring model stress intensity factor solutions utilized
the classical plate bending theory which in Chapter 3 was shown to be
inadequate for through crack stress intensity factor determination.
Recall that the LSM provides stress intensity factors along the crack
front of a surface crack such that -acy<a, while the solution to a
through crack gives the SIF at y=*a. For the classical formulation,

Eqn. 4.2 is replaced with,

w p(1-1%) (t)
?ul: S or 2 gt - 71291 () - Tgup(¥) = 1, (4.5)

while Eqn. 4.1 stays the same. It was also shown in Chapter 3 that

for large a/h the Reissner plate bending rotation approaches that of
the classical solution except at the endpoints, see Figs. 3.4-6 and
table 3.2. Since the LSM does not use the solution at the endpoints,
it is expected that for long cracks, the classical and Reissner
theories become identical. This is shown in Figs. 4.1-4 where the LSM
for both theories 1is compared to the 3-D Finite element'solution of
Newman. and Raju, [33], see also [43]. In these figures K1t and Klb
correspond to the edge-cracked strip SIF solution for tension and
bending respectfully. For a/h smaller than about 2, which is the
realistic geometry range for part-through cracks, the transverse shear
theory shows significant improvement over the classical theory. For
larger a/h it scems that the extra expense of integrating the Fredholm
kernel, Eqn. 4.4, is unnecessary. Also as a/h gets larger, the

numerical solution of 4.1,2 gets more difficult. With regard to table
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3.2, it is rather surprising that the classical theory gives such good
results for a/h as small as 2. Probably the reason is that tension,
which is the same for both theories, dominates the behavior of the
solution. Otherwise the difference would be of the order of 10% for
a/h as high as 7.

In tables 4.1-10a,b the normalized SIFs along the crack front for
both rectangular (a) and semi-elliptical (b) cracks are listed for
tension and bending. The value of the normalized SIF at the center of
a semi-elliptical crack for various crack lengths and depths is given
in table 4.11 and the effect of Poisson’s ratio on this quantity is
shgwn in table 4.12. The only difference between this solution and
the previous solutions which use Reissner plate theory [48] is the
compliance functions, i.e. 7ij of Eqns. 4.1,2. For £<.8 the curves
used here, Egns. C.102 with coefficients listed in table C.2, are
slightly more accurate, see Eqns. C.108,109. This improved accuracy
is minimized after going through the solution process because of
normalization such that the results of tables 4.1-10 differ from those
using BEqns. C€.102 by at most .002, an insignificant amount considering
the approximate nature of the model. The contribution given here is
for deep cracks, i.e. .8¢£{.95. As noted in Appendix C, the
compliance curves can actually be extrapolated to {=1 because they
match the asymptotic behavior given by Benthem and Koiter [65].
Although the values in these tables for crack depths of .9 and .95 are
small, the normalization factor, which is the corresponding stress
intensity factor for the edge-cracked strip, is very large. Tables
4.13,14 list the stress intensity factors at the maximum penetration
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point of a semi-elliptical crack normalized with respect to the
solution of the edge-cracked strip for both the corresponding depth
(4.13a,14a) and for comparative purposes, with respect to a depth of
.2 (4.13b,14b). The results for tension, table 4.13, show that the
driving force, (dimensional SIF), does not simply increase with crack
depth like the solution for the edge crack. For bending, table 4.14,
the driving force is maximum for shallow cracks because of the
constraining effect of the ends which actually causes interference and

negative SIFs for deep cracks as discussed in the next section.

4.1.1 Contact Bending

The boundary conditions of the bending through crack problem
specify the crack surface loading, :2. This can only be satisfied if
tension is applied (superimposed) to open the crack to prevent
interference due to bending rotation. The crack opening displacements
due to tension and bending loads are such that contact will first
occur at the ends of the crack, therefore the condition for no contact
is satisfied if the combined stress intensity factor (tension plus
bending component) at the corner on the compressive side of the plate

is zero. The necessary ratio of tension to bending is

IHQS

k
Ky (h/2)

G,0a

’ | (4.6)

Q8

2
where the subscript D refers to dimensional.
There 1is a similar problem with bending of a part-through crack.

As can be seen from tables 4.1-10a,b, the stress intensity factors due
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to bending change sign as the crack gets deeper. Siﬁce a negative SIF
has no meaning, these solutions require a superposition of a tensile
solution to make K/KobZO. The contact curve for the through crack
case where 21 is. zero in Eqn. 4.6, can be obtained from the line-
spring model by finding the K/K0b=0 curve. Along this curve, imagined
to be a crack front, the crack opening displacement is cusp shaped.

This solution is obtained by an iterative process where the "crack

depth™ L(y)/h, is the unknown and the condition

K = ﬁ?[olgl(y) + ngz(y)] =0 , (4.7)
is used to determine it. These curves for various a/h values are
given in table 4.15. A more useful problem is to determine the

reduction in the stress intensity factor at the corner for bending
with interference; see Fig. 4.5. The line-spring model can be used to

approximate this quantity as shown in the next section.

4.1.2 Using the LSM to Calculate SIFs at the Corners

In the development of the line-spring model, the net ligament of
the part-through crack is replaced with "net ligament" stresses. In
solving the problem these stresses are determined. There is no
difference between this problem and a through crack problem with these
net ligament stresses applied as additional crack surface loads.
Therefore in the same way that SIFs are calculated for a through
crack,.SIFs at the corners of a surface crack, i.e. y=*a, z=h/2 can be
calculated and with no extra work. The problem with this idea is that

close to the endpoints the net ligament stresses as provided by the

89



model are not accurate and this has a significant effect on the crack
tip stress intensity factors.

As discussed in Chapter 2, section 2.3 and in Appendix C, the
crack shape controls the éndpdint behavior. For example the net
ligament stresses are forced to zero at the ends of a rectangular
crack yét have a square root singularity in the case of a semi-
ellipse.. In Appendix F it is shown that for the ellipse the stress
intensity factor at the corner as predicted by the LSM is zero.
Numerically this could not be shown but the results indicate.a
diminishing value as more terms are taken in solving the integral
equation. The only crack profile that will make the net ligament

stresses finite is the 1/4 power curve, 1i.e.

L)/h = € = g-sHY . | (4.8)

The technique of section 2.3, presented again in Eqns. 4.9,10, where
this behavior is imposed at the ends of the crack profile in order to
get well behaved net ligament stresses, did not work. The corner
stress intensity factor was too sensitive to M, the number of terms in

the series giving the crack profile:

£ = €19 = (15D h(s) - (4.9)

where
h(s) = (1-s2)" 1/4 » Za 21 , (4.10)

Probably the best geometry for approximating the corner stress
intensity factor is one for which crack depth at the end is non-zero.
In this case as noted previously the net ligament stresses as
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p%edicted by the line-spring model go to zero at the endpoints. Since
the net ligament stresses restrict the crack from opening, the error
of the method should overestimate the correct value of the SIF. Note
that the M"actual"™ net ligament stresses (normalized with respect to
the stress at "infinity") are probably between zero (for degp cracks)
and one (for - shallow cracks), while the normalized applied
perturbation load is negative one.

The simplest problem that satisfies this geometry condition is
the rectangular crack. The tension and bending cases are given in
Fig. 4.6 as a function of the crack depth for a/h=1. Note that as the
crack depth goes to one, the through crack value is approached in a
manner similar to the case when two collinear cracks approach each
other where behavior at the outer crack tip resembles that of one long
crack instead of two, see Figs. 3.1a-d. In Fig. 4.7 plots similar
to those of Fig. 4.6 are presented for the crack shape given in Eqn.
4.8. This figure is included only for purposes of comparison.

The contact problem of the last section also satisfies the
condition of non-zero crack depths at the ends. Results for the
"corrected" bending stress intensity factor are presented in Fig. 4.8.
This plot shows how the interference of bending reduces the stress
intensity factor from the valuc calculated when Eqn. 4.6 is assumed to
be satisfied.

This method is of course very approximate. From the regults of
Fig. 4.6 it seems as though the tension case is wrong because the
stress intensity factor exceeds the through crack value of one. This
is due to the contribution from induced bending. It is conceivable
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that at the corner opposite the constraint, crack growth is more
likely than without the constraint although total failure of the plate
is less likely. In Newman’s finite element results, [33], there are
some geometries where this occurs but only by about 2% ( k(h/2) /ola
=1.023 for a/h=.4, Lo/h=.8), not the 20% that is calculated here,
although it should be noted that the semi-ellipse has a constraining
effect on the corner that the rectangle does not. I believe that the
trend is correct, however the result should be considered only
approximate.

Perhaps a2 method for approximating the value of the SIF at the
corner of a semi-ellipse, or for any other profile, is to use the
rectangular crack that has an equal amount of net ligament as the
shape being considered. This simply results in a shift along the Lo/h
axis of Fig. 4.6. For the semi-ellipse this shift factor which
results from equating the area of an ellipse to that of a rectangle
is:

(Lo/M)

= (1/4) (Ly/h) (4.11)

reétangle semi-ellipse
In Fig. 4.9 this shifted curve is presented along with some
corresponding values from Ref. [33]. These results are quite close
but for some other geometries the method does not predict such good
agreement. One would think that the model would predict an upper
bound because the material is redistributed away from the ends and
placed in the central portion. This should allow the crack to open

more therefore increasing the SIF. This is observed in most, but not

all cases. Especially for shorter crack lengths, say a/h<l, does this
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reasoning fail. For large a/h the approximation in some cases
overestimates the finite element value by as much as 50%.

Part of the problem with this method is in the interpretation of
the SIF obtained. In a plate theory the stress distribution, and
therefore, the stress intensity factor distribution, through the
thickness is assumed, see Appendix G. The value of the SIF that is
being attributed to the corner 1is actually the sum of the tension
component (constant through the thickness) and the bending component
(linear). To expect good results for a semi-ellipse is wishful
thinking. In fact, the elasticity solution of Benthem [1] indicates
that at a free surface, the SIF is zero for mode 1. It is interesting
to note that the values obtained from this method compare rather well
to the results by Mattheck et. al. [41] where the "corner" SIF is
averaged in order to get a general idea of the surface crack to grow
outwards. Comparison is good for all geometries given in this
reference. Perhaps the interpretation of the LSM approximation should
also be regarded as an averagé, especiélly taking into account the
results from Benthem. More work needs to be done to use the model to
investigate this prcblem.

Theocaris and Wu [53,54] have devised a technique which uses the
I.SM and classical plate theory to obtain the SIF distribution over the
entire range, including the corner. To obtain the value at the
corner, they equate the SIF from the LSM (which is in a plane
perpendicular to the plate surface) to the SIF from the plate with a
through crack (which is in a plane parallel to the plate surface).
They assume the semi-elliptical crack profile has some small, non-zero
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depth at the endpoint which is measured experimentally. The
shortcoming of @his method, besides assuming that there 1is a
displacement at the endpoint, is that the classical plate theory is
used wﬂich is inadequate to solve for through crack SIFs that involve
bending as the part-through crack problem always does. This same
technique cannot be applied to the Reissner plate because of
convergence problems. Theocaris and Wu have solved the integral

equations in closed form so this difficulty is overcome [53].

4.1.3 Double Cracks

Crack interaction introduces more of a three-dimensional nature
to the problem. For through cracks the plate theory should be
accurate for crack tip separations of the order of the plate
thickness. The justification for letting the cracks get closer
together comes from asymptotic properties of the theory that for
example are correct in terms of elasticity theory for small cracks,
i.e. a/h approaching zero. The part-through crack problem is
different. The model is inaccurate near the end, both along the crack
front, and in terms of its influence on the solid at lyl>a as shown in
the last section. Note that essentially the singular stress field
causes the interaction. The contribution from the Fredholm kernel is
secondary, especially at small separations where the problem is most
interesting.

For the semi-ellipse, the most studied geometry in the
literature, it was shown in Appendix F that a singular stress field
does not exist, although numerically this is nearly impossible to show
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because of convergence difficulties. This means that numerically
there will be a singular stress field. Therefore the crack
interaction problem for this crack shape cannot be properly solved.
In table 4.16 the tension solution to two symmetrically ﬁositioned
surface cracks is presented. The geometry of the problem is shown in
Fig. 3.8b. Results for both the semi-ellipse and the 1/4 power curve
of Eqﬁ. 4.8 are included in this table. The difference in the
behavior of the solution for two nearly similar crack shapes, for -.98
{s<0, shows that the line-spring model does not prédict the correct
trends. The semi-ellipse has a SIF that is nearly constant, whereas
the other curve varies considerably. For a larger separation it
should not be expected to be nearly as accurate as for a single crack.
Perhaps the SIF in the center of the crack will be reasonably
accurate. Results for a semi-elliptical crack under both tension and

bending are given in table 4.17. These results can also be found in

Ref. [59].

4.2 Modes 2 and 3

From Eqns. 3.168,179,180, 2.31, and from the superposition of
Fig. C.1, the integral equations for the skew-symmetrically loaded

part-through crack are:

b 2u,(t) b
1 3 1
L )(a sl Ja {o5(6)Kqq(2) + ug(t)Kqg(2)) dt -

NGO ¥ =-saw/s0, (4.12)
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b u,(t)
1 4 o0
= dt - 7,,u,(y) - -K =20, , 4.13
o %a (o) ? T4494(Y) - Ysu5() = -Noo = -0y (4.13)
b u.(t) b
1A f S L [ {ug)kgg (@) + uy (£)Koq(2)) dt
a (t-y) a
- Tggua () - 1geus) = B = oy, (419
where »
z=flt-yl, a<y<b , | (4.15)

Kyy(®) = F{-1n(@) + [Ky(a) - 55 | Ko@) + @)}, a.16)
zZ

=
W
($2]
~—
N
A
i

p{ 35 - [z + §]K2(z) + zKO(z)} , | (4.17)

K, (2) = TEI%IBT{ In(z) + [i% _ i§ r 4K (z) - 4Ky (z) - f% K, (2)

¢ In(2)] - [y + 2ln(z)| } (4.18)
Kgy(2) = IE?%€ZS{ 2% v [z + 2k - 2Ky (o) ) (4.19)

Again it is noted_that in crack propagation studies this solution may
be used only if the crack grows in its own plane. Results for crack
lengths of a/h = .5, 1., 2., 4., and crack depths of Lo/h = .2, .4,
.6, .8, .9, .95 are given in tables 4.19-21a,b for rectangular (a) and
semi-elliptical (b) cracks for out-of-plane shear, in-plane-shear and
for twisting. Because there are two stress intensity factors (modes
2,3), normalization will be with respect to the primary vaiue obtained
from the edge-cracked strip at the maximum depth, see section C.4 of
Appendix C. In the tables and figures this normalization factor will
be denoted by K20, K3IO, and K3TO for out-of-plane shear, in-plane
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shear, and twisting, respectively. Profiles of the SIFs for a/h=1,
v=.3 are given in Figs. 4.10-15. Note that because of the symmetry of
the problem the secondary stress intensity factor at the center of the
crack is zero. When the primary loading is mode 3, (twisting or in-
plane shear), out-of-plane crack growth which results from mode 2
contributions is minimized in the central portion of the crack front.
The model also shows that the secondary value is insignificant
throughout the range. For the rectangular crack this is expected, but
for the semi-ellipse this should not be the case. As in the mode 1
problem for which the model works well, it can only be hoped that the
inaccuracies towards the ends do not significantly affect the solution
in the center. The value of the SIF at the center of a semi-
elliptical crack is listed in table 4.22 for various crack lengths and
depths for all loading cases. The closer the value in thesé tables is
to one, the closer the conditions are to plane strain. For the
loading case of out-of-plane shear, plane strain conditions are more

casily met than in the mode 1 cases of tension and bending, which are

shown in Table 4.11. The opposite is true for in-plane shear and
twisting. The effect of Poisson’s ratio on the solution is shown in
table 4.23.

The method of approximating the value of the "corner" SIF of a
semi-elliptical crack used in Sec. 4.1.2 for the mode 1 case is
applied here. The results are given in table 4.24. As discussed in
Appendix G, the work of Benthem [1] shows that at a free surface the
stress singularity for shear (modes 2 and 3) is greater than .5. The
plate theory used predicts a zero value for the mode 3 SIF at the
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surface because of the assumed parabolic shear distribution, when in
fact it should be infinite. Therefore as with the mode 1 prediction
the numbers obtained from this method should be regarded as an average

value that gives some idea of outward crack growth.
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Table 4.1a,b Normalized stress intensity factors
for a rectangular (a), or semi-elliptical (b),
surface crack in a plate under tension or bending
loads, a/h=.5, v=.3 :

Rectangular crack, Tension.

Lo/h 2 .4 .6 .8 .9 .95

y/a

0. .784 .428 .193  .0595 .0206 .00767
.1 .783 .427 .192 .0594 .0205 .00765
.2 .779 .423 .190 .0588 .0203 .00756
.3 .773 .417 .187  .0579 .0199 .00741
.4 .762 .407 .183 .0565 .0194 .00719
.5 .747 .393 .177 .0545 .0186 .00689
.6 .724 .374 .169 .0519 .0176 .00648
.7 .688 .348 .158 .0484 .0162 .00593
.8 .631 .31 .142  .0432 .0143 .00515
.9 .523 .253 .118 .0345 .0111 .00392
.95 .417 .205 .096 .0267 .0083 .00290
.98 .301 .157 .071 .0182 .0055 .00190

Rectangular crack, Bending.
Ly/h .2 4 6 .8 .9 .95

y/a

0. .765 .339 .0620 -.0308 -.0236 -.0121
.1 .764 .338 .0614 -.0309 -.0236 -.0121
.2 .760 .333  .0594 -.0312 -.0235 -.0120
.3 .752 . 326 .0561 -.0316 -.0234 -.0119
.4 .741 .314 .0513 -.0322 -.0232 -.0117
.5 .724 .298  .0447 -.0329 -.0229 -.0113
.6 .699 .277 .0361 -.0337 -.0223 -.0109
7 .660 . 247 .0249 -.0342 -.0214 -.0102
.8 .598 .205 .0102 -.0339 -.0196 -.0091
.9 .480 .139 -.0091 -.0308 -.0161 -.0072
.95 - . 366 .087 -.0201 -.0258 -.0125 -.0054
.98 .239 .038 -.0237 -.0187 -.0085 -.0036
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Table 4.1b Normalized stress intensity factors

for a semi-elliptical surface crack in a plate

under tension or bending loads, a/h=.5, v=.3
Semi-elliptical crack, Tension.

Lo/h .2 .4 .6 .8 .9 .95

i
S~
Y

.729 .390 .174  .0499  .0158 .00547
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[\
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.728 .390 .174 .0500 .0159 .00546
.724 .388 .174 .0503 .0160 .00547
717 .385 .173 .0507 .0163 .00554
.708 .381 .172 .0512 .0166 .00567
.695 .376 .169 .0515 .0170 .00583
.677 .369 .166 .0514 .0173 .00598
.654 .361 .162 .0506 .0173 .00603
.622 .351 .157 .0484 .0166 .00584
.571 .342 .152 .0452 .0151 .00525
5 .526 .340 .153  .0440 .0142 .00485
8 .474 .347 .163  .0460 .0145 .00484
Semi-elliptical crack, Bending.
Lo/h .2 .4 .6 .8 .9 .95
.709 .306 .053 -.0281 -.0198 -.00960
.709 .307 .055 -.0273 -.0194 -.00934
.709 .310 .059 -.0249 -.0182 -.00867
.708 .316 .066 -.0208 -.0164 -.00776
.706 .324 .076 -.0151 -.0139 -.00667
.704 .335 .080 -.0077 -.0107 -.00539
.699 .348 .105 .0018 -.0067 -.00383
.692 .364 .124 .0132 -.0017 -.00189
.678 .385 .147 .0269 .0044 .00054
.649 .413 .178 .0432 .0117 .00347
5 .616 .437 .202 .0542 .0162 .00519
8 .569 .467 .233 .0661 .0205 .00675
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Table 4.2a,b Normalized stress intensity factors
for a rectangular (a), or semi-elliptical (b),
surface crack in a plate under temsion or bending
loads, a/h=1 , v=.3

Rectangular crack, Tension.

«
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Lo/h .2 .4 .6 .8 .9 .95
.864 .561 .273 .0844 .0293 .0112
.863 ~ .559 .273 .0841 .0292 .0112
.861 .555 .270 .0833 .0289 .0111
.857 .549 .266 .0819 .0284 .0109
.850  .538 .259  .0798  .0277 .0106
.840 .523 .251 .0769 .0266 .0101
.825 .502 .239  .0731 .0252 .0095
.800 .471 .222 .0679  .0233 .0088
.755 .425 .199  .0605 .0205 .0077
.655 .347 .163  .0487 .0161 .0059
5 .541 .279 .132 .0382 .0123 .0044
8 .399 .208 .098 .0266 .0083 .0030
Rectangular crack, Bending.
Lo/h .2 .4 .6 .8 .8 .85
.852 .492 .153 -.0101 -.0210 -.0128
.851 .490 .152 -.0104 -.0210 -.0128
.848 .486 .149 -.0111 -.0211 -.0128
.844 .478 .145 -.0122 -.0213 -.0128
.837 .466 .137 -.0140 -.0216 -.0128
.826 .448 .127 -.0162 -.0218 -.0127
.809 .424 .114 -.0192 -.0221 -.0125
.782 .389 .096 -.0227 -.0222 -.0121
.733 .336 .071 -.0267 -.0218 -.0114
.624 - .246 .033 -.0297 -.0195 -.0096
5 .500 .169 .006 -.0283 -.0161 -.0076
8 .345 .091 -.013 -.0227 -.0115 -.0052
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Table 4.2b Normalized stress intensity factors
for a semi-elliptical surface crack in a plate
under tension or bending loads, .a/h=1 , v=.3

Semi-elliptical crack, Tension.

Ly/b .2 4 .6 .8 9 .95

“«
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.817 .507 .244 .0725 .0235 .00833
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.816 .506 .244 .0726  .0235 .00830
.810 .503 .243  .0727 .0236 .00825
.800 .498 .242 .0730 .0238 .00825
.786 .491 .239 .0731 .0240 .00830
.766 .481 .236 .0731 .0242 .00838
.740 .469 .231  .0725 .0243 .00842
.706 .452 .225 .0712 .0240 .00835
.657 .431 .217 .0687  .0232 .00807
.581 .401 .207 .0654 .0218 .00752
5 .513 .379 .203 .0644 .0213 .00726
8 .438 .359 .205 .0665 .0219 .00742
Semi-elliptical crack, Bending.
Lo/h .2 .4 .6 .8 .9 .95
.804 .441 .133 -.0114 -.0186 -.01064
.804 .441 .134 -.0102 -.0180 -.01023
. 802 .444 .139 -.0068 -.0161 -.00914
.798 .449 .147 -.0012 -.0131 -.00763
.792 .455 .158 .0065 -.0093 -.00585
.783 .463 .172 .0163 -.0045 -.00382
771 .472 .189 .0280 .0010 -.00152
.752 .482 .208 .0415 .0073 .00107
.722 .492 .231 .0568 .0145 .00398
.665 .499 .259 .0747 .0225 .00719
5 .606 .500 .280 .0867 .0275 .00911
8 .531 .496 -.302 .0986 .0325 .01096
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Table 4.3a,b Normalized stress intensity factors
for a rectangular (a), or semi-elliptical (b),
surface crack in a plate under tension or bending
loads, a/h=1 , v»=.0

Rectangular crack, Tension.

Lo/h 2 .4 .6 .8 .9 .95
y/a
0. .838 .521 .254 .0815 .0290 . .0112
.1 .837 .520 .253 .0813 .0289 .0111
.2 .835 .516 .251 .0804 .0286 .0110
.3 .831 .510 .247 .0791 .0281 .0108
.4 .824 .500 .241 .0771 .0273 .0105
.5 .814 .487 .233 .0743 .0262 .0100
.6 .799 .468 .222  .0705  .0247 .0094
7 .774 .440 .208 .0654  .0228 .0086
.8 .729 .398 .186 .0582  .0200 .0075
.9 .630 .326 .153  .0467 .0156 .0057
.95 .519 .262 - .124 .0365 .0119 .0043
.98 .381 .197 .092 .0253 .0080 .0028
Rectangular crack, Bending.
Lo/h .2 4 .6 .8 S .85
y/a
0. .824 .446 .130 -.0123 -.0198 -.0118
.1 .823 .444 .129 -.0125 -.0199 -.0118
.2 .820 .440 .127 -.0132 -.0200 -.0118
.3 .816 .433 .122 -.0143 -.0202 -.0118
.4 .809 .422 .116 -.0159 -.0204 -.0117
.5 .798 .406 .107 -.0180 -.0207 -.0117
.6 .781 .384 .095 -.0207 -.0210 -.0115
7 .754 .352 .079 -.0239 -.0211 -.0112
.8 .705 .303 .056 -.0275 -.0207 -.0105
.9 .597 .221 .023 -.0298 -.0185 -.0089
.95 .476 .150 -.001 -.0280 -.0153 -.0070
.98 .326 .079 -.017 -.0221 -.0109 -.0048
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Table 4.3b Normalized stress intensity factors
for a semi-elliptical surface crack in a plate
under tension or bending loads, a/h=1 , v=.0

Semi-elliptical crack, Tension.

Lo/h .2 .4 .6 .8 .9 .95
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.791 .473 .228 .0699 .0232 .00829
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.790 .472 .228 .0699 .0232 .00825
.785 .470 .227 .0699 .0232 .00817
.776 .466 .225 .0699 .0233 .00813
.764 .460 .222 .0697 .0236 .00814
.747 .451 .219 .0692 .0234 .00815
.724 .441 .214 .0682 .0232 .00812
.693 .428 .208 .0663  .0227 .00797
.649 .410 .200 .0635 .0217 .00759
.578 .387 .182  .0600 .0201 .00685
5 .515 .369 .190 .0591 .0195 .00665
8 .442 .355 .194 .0613 .0200 .00678
Semi-elliptical crack, Bending.
Lo/h .2 .4 .6 .8 .9 .95
776 .401 .113 -.0129 -.0174 -.00966
.776 .402 .115 -.0119 -.0168 -.00931
.774 .405 .119 -.0089 -.0152 -.00838
771 .410 .126 -.0039 -.0127 -.00710
.768 .417 .137 .0029 -.0094 -.00558
.762 .427 .150 .0116 -.0052 -.00383
.752 .438 .166 .0222 -.0003 -.00182
737 .450 .186 .0347 ° .0054 .00052
.712 .465 .209 .0491 .0121 .00320
.661 .479 .239 .0665 .0197 .00625
5 .607 .486 .261 .0785 .0246  .00812
8 .535 .488 .286 .0914 .0295 .00992
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Table 4.4a,b Normalized stress intensity factors
for a rectangular (a), or semi-elliptical (b),
surface crack in a plate under tension or bending
loads, a/h=1 , v=.5

Rectangular crack, Tension.
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Lo/h 2 .4 .6 .8 .9 .95
.891 .615 .308 .0927 .0314 .0119
.890 .613 .307 .0924 .0313 .0119
.888 .609 .304 .0915 .0310 .0118
.885 .602 .300 .0899 .0305 .0116
.879 .591 .292  .0876  .0297 .0113
.870 .575 .282 .0844 .0286 .0108
.856 .552 .268 .0802 .0271 .0102
.833 .519 .249 .0744 .0251 .0094
.791 .469 .223 .0664 .0222 .0083
.695 .383 .181 .0536 .0176 .0065
5 .580 .307 .146  .0423 .0136 .0049
8 .431 .228 .109  .0297 .0092 .0033
Rectangular crack, Bending.
Lo/h .2 .4 .6 .8 .9 .95
.881 .554 .194 -.0024 -.0206 -.0136
.881 .553 .193 -.0027 -.0207 -.0136
.879 .548 .189 -.0035 -.0208 -.0136
.874 .540 .184 -.0049 -.0210 -.0136
.868 .527 .175 -.0070 -.0214 -.0136
.858 .508 .164 -.0097 -.0219 -.0135
.843 .482 .148 -.0133 -.0223 -.0134
.819 .444 .127 -.0177 -.0226 -.0131
.773 . 387 .098 -.0229 -.0225 -.0123
.667 .288 .063 -.0279 -.0206 -.0105
5 .542 .201 .020 -.0280 -.0173 -.0084
8 .380 .113  -.006 -.0234 -.0126 -.0058
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Table 4.4b Normalized stress intensity factors
for a semi-elliptical surface crack in a plate
under tension or bending loads, a/h=1 , v=.5

Semi-elliptical crack, Tension.
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Lo/h .2 .4 .6 .8 .9 .95

.848 .554 .273  .0789  .0254 .00895
.845 .553 .273  .0799  .0255 .00892
.839 .549 .272 .0802 .0256 .00888
.828 .543 .270 .0807 .0259 .00891
.811 .534 .268 .0811 .0263 .00900
.789 .522 .264 .0814  .0266. .00912
.759 .506 .259 .0812 .0269 .00924
.720 .485 .251 .0801 .0268 .00924
.666 .457 .241 .0778 .0262 .00904
.582 .417 .227 .0742  .0249 .00855

5 .509 .387 .219  .0727  .0242 .00830

8 .429 .358 .217 .0741  .0248 .00846

Semi-elliptical crack, Bending.
LO/h .2 .4 .6 .8 .9 .95

.837 .496 .167 -.0052 -.0188 -.01147
.836 .496 .169 -.0039 -.0180 -.01097
.833 .499 .174 .0001 -.0157 -.00964
.828 .502 .182 .0066 -.0122 -.00782
.820 .507 .193 .0154 -.0076 -.00567
.809 .512 .208 .0263 -.0022 -.00326
.793 .518 .225 .0392 .0041 -.00061
.769 .523 .244 .0538 .0112 .00231
.733 .527 .265 .0699 .0188  .00545
.667 .523 .280 .0880 .0271  .00881

5 .602 .513 .305 .0996 .0322  .01078

8 .521 .497 .322 .1119 .0372 .01266

© DD WD U W
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Table 4.5a,b Normalized stress intensity factors
for a rectangular
surface crack in a plate under tension or bending

loads, a/h=1.5 , v=.3

Rectangular crack, Tension.

Lo/h .2

o<
~
®
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0o ”n

.899
.888
. 897
.893
. 888
.880
.868
.849
.813
.727
.617
.465

.4

.639
.638
.634
.627
.616
.601
.580
.549
. 500
.413
.332
.246

.6

.333
.332
.329
.324
.317
.307
.292
.272
.244
.198
.159
.118

Rectangular crack,

Ly/h .2

-«
~
[

. 890
.889
.887
.884
.878
.870
. 857
.836
.797
.702
.582
.417

O WWOo DU AW -

0o o

4

.582
.581
.576
.568
.556
.539
.514
.478
.422
.322
.230
.133

.8

.222
.221
.218
.212
.203
.192
.175
.153
.121
.071
.032
-.000
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.8

.1037
.1034
.1024
.1006
.0981
.0948
.0898
.0832
.0739
.0592
.0465
.0327

Bending.

[+
.

.0084
.0081
.0072
.0056

- .0032

.0000
-.0042
-.0098
-.0169
-.0251
-.0276
-.0245

.0357
.0355
.0352
.0346
.0337
.0324

.0307
.0283
.0250
.0196
.0151
.0103

=]

.0173
.0174
.0176
.0179
.0184
.0191
.0199
.0207
.0214
.0208
.0182
.0136

(a), or semi-elliptical (b),

.95

.0137
.0136
.0135
.0132
.0129
.0124
.0117
.0107
.0094
.0073
.0055
.0037

[l
n

.0126
.0126
.0126
.0127
.0127
.0128

-.0128

.0127
.0123
.0109
.0090
.0064



Table 4.5b Normalized stress intensity factors
for a semi-elliptical surface crack in a plate
under tension or bending loads, a/h=1.5 , v=.3

Semi-elliptical crack, Tension.

Ly/h -2 4 .6 .8 .9 .95

<
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GD;D.(OG)\IQO"AC&)M'—‘°

.858 .577 .295 .0895 .0291 .0104
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.856 .576 .294 .0895 .0291 .0103
.849 .571 .293 .0897 .0292 .0102
.837 .564 .291 .0899 .0294 .0102
.820 .554 .287 .0900 .0296 .0102
L7197 .541 .282 .0898 .0298 .0103
.767 .523 .276 .0890 .0298 .0103
.726 .500 .267 .0873 .0295 .0102
.670 .469 .254 .0844 .0286 .0099
.582 .424 .238 .0801 .0271 .0094
5 .506 .389 .227 .0781 .0264 .0091
8 .422 .352 .221 .0786 .0268 .0092
Semi-elliptical crack, Bending.
Ly/h .2 4 .8 .8 .9 .95
.848 .521 .191 .0040 -.0162 -.01078
.847 .522 .193 .0054 -.0153 -.01025
.844 .524 .198 .0095 -.0129 -.00884
.838 .527 .206 .0161 -.0092 -.00690
.830 .531 .217 .0251 -.0044 -.00463
.818 .535 .231 .0362 .0013 -.00211
.801 .540 .247 .0491 0077 - .Q0063
.776 .543 .265 .0636 = .0148 .00358
.738 .544 .285 .0795 .0224 .00673
.669 .535 .307 .0974 .0307 .01009
5 .600 .519 .320 .1087 .0358 .01207
8 .513 .493 .331 .1200 . 0407 .0139%4
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Table 4.6a,b Normalized stress intensity factors
for a rectangular (a), or semi-elliptical (b),
surface crack in a plate under tension or bending

loads, a/h=2 , v=.3

Rectangular crack, Tension.

. O«
_ e N
%

Lo/h 2 4 .6 .8 .9 .95
.920 .693 .382 .120 .0408 .0155
.920 .692 .381 .120 .0407 .0155
.918 .688 .378 .119  .0403 .0153
.915 .681 .373 .117  .0396 .0151
.910 .671 .364 .114  .0386 .0147
.903 .656 .353 .110 .0372 .0141
.893 .635 .337 .104 .0353 .0134
.877 .604 .314 .097 .0326 .0123
. 847 .555 .282 .086 .0287 .0108
772 .464 .228 .068 .0225 .0083
5 .669 .375 .182 .053 .0173 .0063
8 .515 277 .134 .038 .0118 .0042
Rectangular crack, Bending.
Lo/h .2 4 .6 .8 .9 .95

“«
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Y

.913 .645 .279 .0254 -.0136 -.0121
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.912 .644 .278  .0250 -.0137 -.0121
.910 .639 .274  .0239 -.0140 -.0121
.07 .631 .267  .0220 -.0144 -.0122
.902 . .619 .258 .0192 -.0151 -.0123
.895 .602 .245 .0152 -.0159 -.0124
.884 577 .226 .0100 -.0171 -.0126
.866 .542 .201 .0029 -.0185 -.0127
.834 .485 .164 -.0066 -.0202 -.0126
.752 . 380 .106 -.0193 -.0210 -.0117
5 .640 .279 .066 -.0254 -.0194 -.0100
8 .472 .168 .013 -.0252 -.0151 -.0073
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Table 4.6b Normalized stress intensity factors
for a semi-elliptical surface crack in a plate
under tension or bending loads, a/h=2 , v=.3

" Semi-elliptical crack, Tension.

Lo/h .2 .4 .6 .8 .9 .95

. <
e N
W

.883 .627 .336 .104 .0336 .0120
.880 .625 .335 .104  .0337 .0119

© O © 001D U A W

O«
~
'Y

© 0D 00D U B W

.873 .620 .333 .104 .0338 .0118
.860 .611 .330 .104 .0340 .0118
.841 .588 .326 .104 .0343 .0118
.815 .581 .319 .104 .0346 .0119
.781 .558 .310 .103  .0346 .0119
737 .530 .298 .101  .0342 .0119
.676 .491 .281 .097 .0332 .0115
.582 .435 .258 .091 .0314 .0109
5 .501 .390 .241 .088 .0304 .0105
8 .413 .344 .227 .086 .0303 .0105
Semi-elliptical erack, Bending.
Lo/h .2 .4 .6 .8 .9 .95
.875 .578 .239 .0180 -.0135 -.01066
.874 .579 .241 .0186 -.0125 -.01002
.870 .580 .245 .0242 -.0097 -.00834
.863 .581 .253 .0316 -.0054 -.00604
.852 .582 .264 .0416 .0001 -.00338
.838 .584 .277 .0536 .0066 -.00481
.818 .584 .291 .0672 .0136 .00259
.789 .582 .307 .0822 .0212 .00580
.746 .575 .323 .0981 .0291 .00911
.670 .553 .338  .115 .0374  .0125
5 .595 .525 .343 .125 .0422 .0144
8 .503 .485 .344 .133 .0465 .0162
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Table 4.7a,b Normalized stress inténsity factors

- for a rectangular (a), or semi-elliptical (b),

surface crack in a plate under tension or bending
loads, a/h=3 , v=.3

Rectangular crack, Tension.

Lo/h .2 4 .6 .8 .9 .95
y/a
0. .944 .766 .461 .150 .0495 .0184
.1 .944 .765 .460 .149  .0493 .0183
.2 .942 .761 .456 .148  .0489 .0182
.3 .940 .754 .449 .146 .0481 .0179
.4 .936 .743 .430 .142  .0470 .0175
.5 .930 .729 .426 .137  .0453 .0169
.6 .922 .708 .407 .130 .0431 .0160
.7 .909 .678 .382 .121  .0399 .0148
.8 .886 .630 .343 .107  .0351 .0130
.9 . 827 . 537 .279 .085 .0274 .0100
.95 .738 .440 .222 .066 .0209 .0075
.98 .588 .327 .162 .046 .0142 .0051

Rectangular crack, Bending.

Loy/h .2 4 .6 8 .9 .95
y/a .
0. .939 .729 .370 .0565 -.0065 -.0108
.1 .939 727 .369 .0560 -.0066 -.0108
.2 .937 .723 .365 .0545 -.0069 -.0109
.3 .934 .715 .357 .0520 -.0075 -.0110
.4 .930 .703 .346 .0484 -.0084 -.0111
.5 .924 .686 .330 .0433 -.0096 -.0114
.6 .915 .662 .308 .0364 -.0112 -.0117
7 .901 .627 .279 .0270 -.0135 -.0121
.8 .875 .572 .235 .0138 -.0165 -.0125
.9 .811 .465 .162 -.0060 -.0199 -.0125
.95 .715 .354 .099 -.0188 -.0203 -.0113
.98 .551 .224 .038 -.0245 -.0172 -.0087
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Table
for a
under tension or bending loads,
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00 L

Ly/h

e~
o

~

=

4.7b

semi-

.913
.910
.901
.886
.865
.836
.798
.749
.682
.581
.495
.402

Normalized
elliptical

stress intensity factors
crack in a plate

surface

a/h=3

, v=.3

Semi-elliptical crack, Tension.

.4

.695
.693
.685
.673
.656
.633
.603
.565
.515
.444
. 387
.330

.6

.400
.399
.396
.392
.384
.374
.360
.341
.316
.281
.254
.228

.8

.128
.128
.128
.129
.130
.128
127
.123
117
.108
.101
.085

.9

.0411
.0412
.0415
.0419
.0424
.0428
.0429
.0424
.0410
.0383
.0362
.0348

Semi-elliptical crack, Bending.

.2

.907
.905
.900
.891
.879
.861
.837
.803
.754
.670
.589
.492

.4

.657
.657
.656
.654
.651
.647
.639
.628
. 608
.569
.527
.470

.6

.315
.316
.320
.327
.226
.346
.357
.367
.374
.375
.367
.351
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.8

.0434
.0452
.0506
.0591
.0703
.0834
.0977
.113
.127
.140
.146
.149

-.0081
-.0069
-.0034
.0019
.0086
.0161
.0241
.0323
.0403
.0479
.0516
.0542

.95

.0144
.0144
.0143
.0144
.0145
.0147
.0148
.0147
.0143
.0134
.0127
.0123

.95

.01004
.00924
.00713
.00424
.00095
.00254
.00611
.00966
.0131
.0164
.0179
.0192




Table 4.8a,b Normalized stress intensity factors
for a rectangular (a), or semi-elliptical (b),
surface crack in a plate under tension or bending
loads, a/h=4 , v=.3

Rectangular crack, Tension.

Lo/h .2 .4 .6 .8 .9 .95
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.957 .812 .523 .176  .0571 .0207
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.957 .811 .521 .176  .0569 .0206
.956 .807 .517 .174  .0564 °.0205
.954 .800 .510 .171  .0555 .0202
.950 .790 .499 .167  .0542 .0197
.946 776 .484  .161 .0524 .0191
.938 .756 .463 .1563  .0499 .0182
.927 .726 .434 .142  .0463 .0169
.907 .680 .392 .126 .0408 .0149
.858 .588 .321 .099 .0318 .0114
5 .782 .489 .255 .076  .0240 .0085
8 .639 . 366 .185 .053 .0162 .0057
Rectangular crack, Bending.
Lo/h .2 .4 .6 .8 .9 .95
.954 .782 .442 .0852 .00057 -.0093
.953 .781 .440 .0846  .00043 -.0093
.952 .776 .435 .0828 -.00001 -.0094
.950 .769 .427  .0797 -.00077 -.0096
.946 .757 .414 .0752 -.00188 -.0098
.941 .741 .397 .0690 -.00340 -.0101
.933 717 .373  .0607 -.00545 -.0106
.920 .683 .340 .0493 -.00825 -.0111
.899 .629 .291 .0332 -.0122 -.0119
.846 .524 .209 .0078 -.0177 -.0126
5 .762 - . 410 .136 -.0107 -.0201 -.0121
8 .607 .268 .062 -.0223 -.0185 -.0098

W0 © © 00 ~3 D U W
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Table 4.8b Normalized stress intensity factors

for a semi-elliptical surface crack in a plate

under tension or bending loads, a/h=4 , v=.3
Semi-elliptical crack, Tension.

Lo/h .2 .4 .6 .8 .9 .95
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.930 .741 .450 .149  .0475 .0165
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.927 .738 .449 .149 .0477 .0164
.918 .729 .445 .150 .0481 .0164
.901 .715 .439 .150 .0487 .0165
.878 .693 .429 .150 .0494 .0168
.847 .665 .415 .149 .0500 .0171
.807 .630 .396 .146  .0502 .0173
.755 .584 .371 .141  .0495 .0172
.685 .526 .338 .133  .0474 .0166
.579 .445 .292 .119  .0434 .0154
5 .491 .382 .258 .109  .0402 .0143
8 .397 .319 .224 .099 .0375 .0135
Semi-elliptical crack, Bending.
Lo/h .2 .4 .6 .8 .9 .95
.926 .710 .374 .0663 -.0027 -.00918
.924 .708 .375 .0683 -.0013 -.00824
.918 .707 .379 .0742 .0027 -.00577
.908 .702 .384 .0834 .0088 -.00241"
.894 .696 .390 .0952 .0163 .00137
.874 .687 .397 .109 .0247 .00531
.847 .673 .403 .123 .0333 .00924
.810 .654 .407 .137 .0417 .0130
.758 .626 .406 .149 .0494 .0164
.669 .875 .395 .158 .0557 .0193
5 .585 .523 .377 .159 .0580 .0205
8 .486 .459 .350 .157 .0588 .0211
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Table 4.9a,b Normalized stress intensity factors
for a rectangular (a), or semi-elliptical (b),

surface crack in a plate under tension or bending
loads, a/h=6 , 1=.3

Rectangular crack, Tension.

Lo/h 2 .4 .6 .8 .9 .95
y/a
0. .971 .866 .613 .224 .0710 .0246
.1 .971 .865 .612 .223 .0708 .0246
.2 .970 .862 .607 .221  .0702 .0244
.3 .969 .856 .599 .217  .0690 .0240
.4 .966 .848 .586 .212  .0674 .0235
.5 .962 .835 .569 .204 .0651 .0228
.6 .957 .816 .546 .194  .0619 .0218
.7 .948 .789 .514 .180 .0575 .0203
.8 .931 744 .466 .160 .0511 .0181
.9 . 893 .657 .385 .126  .0398 .0140
.95 .834 .558 .309 .096  .0297 .0103
.98 .709 .425 .224 .066 .0196 .0067

Rectangular crack, Bending.

LG/h .2 4 .6 .8 .9 .95
y/a _
0. .969 .845 .548  .137 .0143 -.00622
.1 .968 .844 .546 .137  .0141 -.00626
.2 .968 .840 .540 .134  .0135 -.00641
.3 .966 .834 .531 .130 .0124 -.00665
.4 .963 .823 .516 .124  .0108 -.00700
.5 .959 .809 .497 .116  .0087 -.00748
.6 .953 .787 .469 .104  .0058 -.00812
7 .943 .755 .432 .090 .0020 -.00899
.8 .925 .704 .377 .069 -.0035 -.0102
.9 .884 .603 .284 .035 -.0121 -.0120
.95 .819 .489 .196 .007 -.0179 -.0126 -
.98 .683 .336 .102  -.015 -.0196 -.0112
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Table 4.9b Normalized stress intensity factors

for a semi-elliptical surface crack in a plate

under tension or bending loads, a/h=6 , v=.3
Semi-elliptical crack, Tension.

Ly/h -2 .4 .6 .8 9 .95
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.950 .800 .526 .186  .0588 .0199
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.947 .796 .524 .186  .0590 .0199
.936 .785 .518 .186  .0597 .0200
.919 .766 .508 .186  .0607 .0203
.893 .740 .493 .186  .0619 .0209
.860 .705 .472 .183 .0627 .0214
.817 .661 .444 .178 .0627 .0217
.761 .606 .408 .169 .0613 .0215
.687 .537 .362 .155  .0576 .0205
.577 .443 .300 .133  .0507 .0183
5 .486 .373 .256 .117  .0452 .0164
8 .390 .304 .215 .102  .0402 .0148
Semi-elliptical crack, Bending.
Lo/h .2 .4 .6 .8 .9 .95
.947 777 .463 .107 .0078 -.00713
.945 775 .463 .109 .0095 -.00597
.938 771 .465 .115 .0144 -.00292
.927 .763 .467 .125 .0217 .00188
.911 .751 .467 .138 .0305 .00574
. 888 .735 .469 .151 .0400 .0104
.858 .713 .468 .164 .0491 .0148
.818 .683 .459 .175  .0573  .0187
.761 .642 .443 .181 .0636  .0218
.667 .576 .412 .180 .0667 .0237
5 .580 .515 .381 .173 .0661 .0239
8 .478 .442 .341 .163 .0636 .0233
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Table 4.10a,b Normalized stress intensity factors
for a rectangular
surface crack in a plate under tension or bending
loads, a/h=10 , v=.3

Rectangular crack, Tension.

Lo/h 2 .4 .6

y/a
0. .983 .917 .723
1 .983 .916 .721
.2 .982 .914 717
.3 .981 .910 .708
-4 .980 .903 .695
.5 .977 .893 .677
.6 .973 .880 .652
7 .967 .855 .617
.8 .955 .815 .564
.9 .926 .735 .472
.95 .883 .642 .385
.98 .788 .506 .281
Rectangular crack,
Lo/h .2 A4 .6

y/a
0. .981 .904 .676
.1 .981 .903 .674
.2 .880 .901 .668
.3 .979 .895 .659
-.4 - . .978 .888 .644
.5 - .975 .876 .623
.6 - .971 .859 .593
7 .964 .832 .552
.8 .951 .786 .490
.9 .919 .694 .384
.95 .873 . 586 .283
.98 .769 .429 .166

117

.8

.305
.304
.300
.295
. 287
.276
.262
.242
.215
.171
.131
.088

Bending.

.8

.226
.225
.222
.216
.207
.195
179
.158
.129
.082
.041
.002

.0966
.0963
.0953
.0937
.0912
.0879
.0834
.0774
.0688
.0541
.0403
.0257

.0406
.0403
.0393
.0376
.0351
.0317
.0273
.0214
.0133
.0003
-.0106
-.0186

(a), or semi-elliptical (b),

.95

.0315
.0314
.0312
.0307
.0300
.0291
.0278
.0260
.0233
.0183
.0134
.0083

.00012
.00000
.00020
.00061
.00120
.00201
.00306
.00447
.00641
.00954
.0120

.0126.
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Table 4.10b Normalized stress intensity factors
for a semi-elliptical surface crack in a plate
under tension or bending loads, a/h=10 , v=.3

Semi-elliptical crack, Tension.
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Lo/h 2 .4 .6 .8 .9 .95
.968 .862 .624 .245 .0780 .0255

.965 .857 .621 .245 .0784 .0256

.953 .843 .611 .244 .0796 .0261

.935 .819 .595 .244 .0813 .0269

.907 .786 .571 .241 .0830 .0279

.871 .743 .538 .235 .0839 .0288

.825 - .689 .497 .224 .0830 .0292

.766 .623 .445 . 207 .0793 .0285

.688 .542 .381 .181 .0716 .0262

.574 .436 .300 .145 .0587 .0218

5 .481 .360 .246 .120 .0493 .0185
8 .383 .287 .197 .098 .0410 .0155

Semi-elliptical crack, Bending.
Ly/h -2 4 .6 .8 9 .95

«
~
]

.966 .846  .576 173 .0274 -.00266

©D O D 00~ U WA -

964  .844  .576  .176  .0296 -.00116
957  .837  .574  .182 .0357  .00275
944  .824  .570  .192 .0445  .00797

926  .806  .564  .204 .0549  .0136

~..g01 .781  .553  .215 .0653 .0191

- 868 - :749  .537  .223 .0745  .0240

824 .708 . .512  .225 .0810  .0277

763  .653  .475  .219 .0832  .0296

664  .572 -~ .419  .200 .0792  .0290

5 575  .502  .373  .182  .0733  .0272
8 471  .422  .322  .161 .0661  .0248
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Table 4.11 Normalized stress intensity factor at
the center of a semi-elliptical crack subjected to
tension and bending, v=.3

Tension
a/h .5 1. 1.5 2. 3. 4, 5. 6. 8. 10.

Ly/h

.1 .910 .945 .959 .967 .976 .981 .984 .987 .990 .992
.2 .729 .817 .858 .883 .913 .930 .942 .950 .961 .968
.3 .b45 .662 .724 .765 .817 .850 .873 .889 .912 .927
.4 .390 .507 .577 .627 .695 .741 .774 .800 .837 .862
.5 .268 .365 .430 .479 .552 .605 .646 .679 .728 .763
.6 .174 .244 .295 .336 .400 .450 .491 .526 .581 .624
.7 102 .146 .179 .207 .253 .2081 .324 .353 .402 .443
.8 .060 .073 .089 .104 .128 .149 .168 .186- .217 .245
.85 .031 .045 .055 .064 .079 .092 .104 .115 .135 .153
.9 .012 .024 .029 .034 .041 .048 .053 .059 .069 .078
.95 .005 .008 .010 .012 .014 .016 .018 .020 .023 .025
Bending
a/h .5 1 1.5 2. 3. 4. 5. 6. 8. 10.
Lo/h

.1 .907 .943 .957 .966 .975 .981 .984 .986 .990 .992
.2 .709 .804 .848 .875 .907 .926 .938 .947 .959 .966
.3 .495 .626 .696 .741 .799 .836 .861 .879 .904 .921
.4 .306 .441 .521 .578- .657 .710 .748 777 .818 .846
.5 .157 271 .346 .404 .490 .552 .599 .637 .693 .734
.6 .053 .133 .191 .239 .315 .374 .422 .463 .527 .576
.7 -.007 .038 .074 .105 .157 .201 .240 .273 .331 .378
.8 -.028 -.011 .004 .018 .043 .066 .087 .107 .142 .173
.85 -.027 -.020 -.012 -.005 .009 .022 .035 .046 .068 .088
.9 -.020 -.019 -.016 -.014 -.008 -.003 .003 .078 .018 .027
.95 -

.005 -.011 -.011 -.011 -.010 -.009 -.008 -.007 -.005 -.003

119



Table 4.12 The effect of Poisson’s ratio on the
normalized stress intensity factor at the center

of a semi-elliptical crack subjected to tension
and bending, a/h=1.

Tension Bending

v 0. .3 .5 0. .3 .5
Lo/h
.1 .935 .945 .956 .933 .943 .954
.2 .791 .817 .848 .776 .804 .837
.3 .628 .662 .707 .587 .626 .676
.4 .473 .507 .554 .401 .441 .496
.5 .339 .365 .406 .239 .271 .319
.6 .228 .244 .273 .113  .133 .167
7 .138 .146 .163 .029 .038 ¢ .056
.8 .070 .073 .080 -.013 -.011 -.005
.85 .044 .045 .049 -.019 -.020 -.017
.9 .023 .024 .025 -.017 -.019 -.019
.95 .008 .008 .009 -.010 -.011 -.011
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Table 4.13a,b Normalized stress intensity factor
at the center of a semi-elliptical surface crack
subjected to temsion. In 13a the normalization
factor is for the corresponding depth edge crack
given by Lo/h. The data in 13b is normalized with

respect to a crack depth of .2 for all Lo/h, v=.3
Ly/h .2 4 .6 .8 .9 .95

728 .390 .174  .0499 .0158 .00547
.817  .507 .244 .0725 .0235 .00833
.858  .577 .295 .0895 .0291 .0104
.883 .627 .336 .104 .0336 .0120
.913  .695 .400 .128 .0411 .0144
.930 .741 450 .149 .0475  .0165
.942 774 491 .168 .0634 .0182
.950 .800 .526 .186 .0588  .0199
.961 .837  .581 .217 .0688  .0228
.968 .862 .624 .245 .0780  .0255

Table 4.13b
Q

Ly/h .2 4 8 .8 9 .95

729 .852 .890 .873 .849  .864

817 1.107 1.248 1.268 1.263 1.317

858 1.261 1.506 1.564 1.563 1.638

.883 1.368 1.714 1.814 1.806 1.889

913 1.518 2.044 2.240 2.209 2.283

.930 1.618 2.301 2.608 2.554 2.603

.942 1.691 2.511 2.941 2.867 2.884

950 1.747 2.687 3.245 3.158 3.139

.961 1.827 2.968 3.792 3.695 3.603

968 1.882 3.186 4.276 4.190 4.025
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Table 4.14a,b Normalized stress intensity factor
at the center of a semi-elliptical surface crack
subjected to bending. In 14a the normalization
factor is for the corresponding depth edge crack
given by Lo/h. The data in 14b is normalized with

respect to a crack depth of .2 for all LO/h’ v=.3

[$4)

w

Ly/h .2 .4 .6 .8 .9 .95
709  .306 .0532 -.0281 -.0198 -.00960
804 .441 .133 -.0114 -.0186 -.0106
848 .521 .191 -.0400 -.0162 -.0108
875 .578 .239 -.0180 -.0135 -.0107
907 .857 .315 .0434 -.00813 -.0100
926 .710 .374 .0663 -.00273 -.00918
938 .748 .422 .0873  .00258 -.00819
947 .777 .463 .107  .00779 -.00713
959 .818 .527 .142  .0178 -.00492
966 .846 .576 .173  .0274 -.00266

Table 4.14b

Ly/h .2 .4 .6 .8 9 .95
708 .516 .167 -.249 -.496 -.680
804 .774 .417 -.101 -.466 -.754
848 .881 .601 -.0355 -.405 -.764
875 .836 .751 -.190 -.339 -.755
907 1.110 .989 .385 -.204 -.712
926 1.199 1.175 .588 -.0685 -.650
938 1.263 1.326 .774  .0647 -.580
047 1.312 1.453 .947 .195 -.505
959 1.382 1.655 1.259 .447 -.348
966 1.430 1.810 1.536 .687 -.188
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Table
bending without

4.15

Con

spring model, v=.3

a/h

.5

.690
.689
.687
.683
.678

.669

.659
.645
.622
.584

1.0

774
774
L1772
.768
.763
.754
.744
.729
.706
.665

1.5

.818
.818
.816
.813
.808
.800
.791
.776
.753
712

tact
additi

2.0

.846
.846
.844
.841
.837
.830
.822
.808
.786
.745

curve

on of tensile
prevent interference as approximated by the line-

3.0

.881
.880
.879
.877
.873
.868

.861°

.849
.829
.790
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for through

4.0

.902
.901
.900
.898
.895
.891
.885
.875
.857
.821

5.0

.916
.916
.915
.913
.911
.906
.901
.892
.877
.844

crack
field to

6.0

.927
.926
.925
.924
.922
.918
.913
.905
.892
.861

8.0 10.0
.941 .950
.941 .850
.940 .950
.939 .949
.937 .947
.934 .944
.930 .941
.924 .936
.912 .926
.886 .903



.98
.95
.90
.80
.70
.60
.51
.40
.30
.20
.10

.10
.20
.30
.40
.51
.60
.70
.80
.90
.95
.98

Table 4.16 Normalized stress intensity factors
are listed at positions along the crack front of
two collinear, symmetric part-through cracks
subjected to tension such that 2b defines the inner
crack tip and #c refers to the outer tip. Two
different crack shapes are used for four different
values of the separation distance, b. results are
given for the crack from b to c.

v=.3, (c-b)/(2h)=a/h, s=2/(c-b)[y-(c+b)/2]

2,1/2 2)1/4

£=§p(1-s €=€,(1-s

b=.1 b=.5 b=1. b4 b=.1 b=.5 b=1. b+w»

.279 - .230 .218 .205 .186 .153 .145 .138
.266 .224 .213 .203 .212 .178 .170 .163
.262  .226 .216 .207 .234 .200 .192 .185
.262 .233 .225 .217 @ .255 .225 .217 .210
.264 .240 .232 .225 .266 .240 .232 .225
.265 .244 .238 .231 .273 .250 .242 .236
.265 .248 .242 .236 .278 .256 .249 .243
.266 .250 .245 .239 ° .281 .262 .256 .249
.265 .252 .247 .242 .283 .266 .260 .253
.265 .253 .248 .243 .284 .268 .262 .256
.264 .253 .249 .244 .284 .269 .264 .258
.263 .253 .249 .244 .283 .269 .264 .258
.262  .252 .249 .244 .281 .268 .263 .258
.261 .251 .248 .243 .278 .266 .262 .256
.259  .250 .246 - .242 .274 .263 .259 .253
.256 .247 .244 .239 .269 .259 .254 .249
.252 .244 .240 .236 .262 .252 .248 .243
.248 .239 .236 .231 .254 .244 .240 .236
.241 .233 .230 .225 .242 .233 .230 .225
.233 .2256 .221 .217 .226  .217 .214 .210
.224 216 .212 .207 .189 .192 .189 .185
.221 .212 .209 .203 .176  .170 .167 .163
.226  .217 .213 .205 .151 .145 .142 .138
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Table 4.17

The normalized
- factor at the maximum penetration point of two

stress

intensity

interacting semi-elliptical surface cracks for
both tension and bending loads, v=.3
o i W il SN o R biray bz*az]
D Y e I T 2 2 o7 2
PLATE TENSION
d/a 0.1 0.25 0.5 1 2 o
c/a
1 . 397 .392 .386 .379 .374 .366
K (A) 0.5 .382  .378  .375  .371  .368  .366
K 0.25 .373 .371 .369 .368 .366 .366
t0 0.1 .367 .367 .366 .366 .366 .366
1 .397 .392 .386 .379 .374 .366
Kt(B) 0.5 .300 .293 .286 .279 .274 .269
K 0.25 .217 .209 .203 .198 .194 .190
t0 0.1 .136 .130 .126 .124 .124 .123
PLATE BENDING
1 .313 .306 .299 .290 .283 .272
Kb(A) 0.5 .292 .287 .282 .278 .274 .272
K 0.25 .280 .275 .275 .273 .272 .272
b0 0.1 .273 .273 .272 .272 .272 .272
1 .313 .301 .299 .290 .283 .272
Kb(B) 0.5 .197 .188 .179 171 .164 .272
K 0.25 .101 .091 .083 .076 072 .069
bO 0.1 .012 .0045 -.0004 -.0038 -.0057 -.0058
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Table 4.18a,b Normalized stress intensity factors
for a rectangular (a), or semi-elliptical (b),
surface crack in a plate under out-of-plane shear,
in-plane shear, or twisting loads, a/h=.5, v=.3

Rectangular crack, Out-of-plane shear

Mode 2, K2/K20

<
~
*Y

DD © 00U N

. O
e N
[

Ly/h -2 4 .6 .8 .9 .95
.998 .960 .810 568  .429  .344
.997 .959 .807 566  .427  .342
.997 .956 .799 557  .420  .336
.997 .950 .786 544  .408  .327
.996 942 - .766 524  .392  .313
.995 .928 .738 .497  .370  .295
.994 .909 .699 461 .341 .27
.991 .877 .645 415 .304  .241
.985 .823 .566 352  .256  .201
.968 .706 .438 260  .186  .146
5 .932 .575 .328 189  .134  .104
8 .858 .409 .217 .122 .08  .086
Mode 3, K3/K20(x100)
Ly/h -2 4 .6 .8 .9 .95
.000 .000 .000 .000 .000 .000
.026 057  -.027  -.204  -.234 -.209
.051 112 -.056  -.404  -.463 - .413
.076 163  -.089  -.598  -.680 ~.605
.099 207  -.127  -.780  -.879 -.779
.120 241  -.173  -.946 -1.05 -.926
.138 261 -.229 -1.09  -1.18 -1.04
.149 261  -.286 -1.19  -1.26 -1.09
.151 230 -.378 -1.23  -1.26 -1.08
.132 146 -.465 -1.13  -1.09 -.914
5 .104 063  -.483  -.941  -.869 -.714
8 067  -.022  -.426  -.673  -.597 -.484

©©OWPTD U~ W

126




Table 4.18a continued, Normalized stress intensity
factors for a rectangular surface crack in a plate
under in-plane shear loading, a/h=.5, v=.3

" Rectangular crack, In-plane shear

Mode 3, K3/K3I0

. O%
—e N
[+

© 0O 00D U W

“«
~
[y

OO D00~ DU W -

Ly/h .2 4 .6 .8 .9 .95
.780 .584 .513 .420  .316  .240
779 .582 .512 418 .314  .239
776 .578 .508 414 .311  .236
769 .571 .502 .408  .305  .231
.760 .560 .492 .397  .206  .224
.746 .545 .478 .383  .283  .213
.725 .524 460 . .364  .266  .199
.692 .495 .434 .337  .243  .181
.638 .451 .396 .299  .211  .155
.534 .379 .333 235 . .161  .116
5 .430 .316 .272 179 .119  .085
8 .321 .251 .199 .121  .078  .055
Mode 2, K2/K3I0(Xx100)
Ly/h .2 4 .6 .8 .9 .95
.000 .000 .000 .000  .000 .000
~.091 -.279  -.274  -.135 -.067 -.038
~.181  -.553  -.540  -.265 -.132 -.075
-.269  -.816 -.788  -.384 -.191 -.108
~.354 -1.06 -1.01 -.487  -.241 -.136
-.435 -1.28  -1.19 -.568 -.280 -.158
-.510 -1.46  -1.32 -.619  -.304 -.171
-.576 -1.58  -1.38 -.633  -.308 ~.173
-.629 -1.62  -1.33 -.504  -.287 -.160
-.657 -1.47  -1.10 -.475  -.227 -.126
5 -.644 -1.22 -.847  -.355 -.169 -.093
8 -.596  -.879  -.567  -.233 -.110 -.061
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Table 4.18a cont. Normalized stress intensity
factors for a rectangular surface crack in a plate
under twisting loads, a/h=.5, v=.3

Rectangular crack, Twisting

Mode 3, K3/K3TO

~«
~
Y

-«
~
1Y

Ly/h -2 4 .6 .8 .9
.754 .443 124 -.723  -2.61

.753 .441 122 -.725  -2.61

.749 .436 115 -.730  -2.61

.743 .426 105 -.740 -2.61
.732 .412 .089  -.752 -2.60
716 .392 .068  -.767 -2.58

.693 .364 .00 -.782 -2.53
.656 .326 .002 -.791 -2.45
.596 .268  -.046 -.782 -2.28
.480 .176  -.109  -.709 -1.90
5 .366 100 -.138  -.592 -1.50
8 .235 .027  -.136  -.426 -1.03
Mode 2, K2/K3TO

Ly/h -2 4 6 .8 .9
.00000  .00000 .0000  .0000  .0000
-.00101 -.00381 -.0058 -.0096 -.0217
-.00202 -.00755 -.0114 -.0189 -.0425
-.00301 -.0111 -.0167 -.0275 -.0618
-.00386 -.0145 -.0214 -.0350 -.0785
-.00487 -.0175 -.0253 -.0410 -.0916
~.00571 -.0199 -.0281 -.0450 -.1001
-.00644 -.0217 -.0294 -.0463 -.1024
-.00703 -.0222 -.0284 -.0438 -.0962
-.00734 -.0202 -.0236 -.0352 -.0767
5 -.00720 -.0168 -.0182 -.0265 -.0523
8  -.00666 -.0121 -.0122 -.0174 -.0374
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.95

.45
.44
.41
.37
.29
.16
.95
.62
.03

{.89

.76
.54

.95

.000
.057
.111
.162
.205
.239
.261
.266
.249
.198
.147
.096




Table 4.18b Normalized stress intensity factors
for a semi-elliptical surface crack in a plate
under out-of-plane shear, in-plane shear, or
twisting loads, a/h=.5 , v=.3

Semi-elliptical crack, Out-of-plane shear

Node 2, K2/K20

Ly/b -2 .4 .6 .8 .9 .85
y/a
0. .988 .883 .685 .467 .350 .277
.1 .982 .880 .684 .466 .348 .273
.2 .963 .871 .683 .465 .343 .262
.3 .831 .855 .680 .464 .337 .251
4 .884 .830 .675 .464 .332 .242
.5 .821 .79 .668 .465 .330 .237
.6 .740 .745 .657 .469 .332 .236
7 .636 .672 .637 .476 .340 .241
.8 .501 .564 .596 .485 .355 .254
.8 .319 .387 .487 .478  .374 .275
.85 .198 .249 .354 .423 .362 .277
.98 .103 .132 .200 .295 .288 .234

f Mode 3, K3/K20(x100)

Ly/b -2 4 6 .8 .9 .95
y/a '
0. .000 .000 .000 .000 .000 .000
1 .024 171 -.027 -.143  -.155 -.133
.2 .048 336 -.049  -.274  -.300 -.256
.3 .070 489  -.044  -.379  -.426 -.363
.4 .090 .623  -.015  -.443  -.520 -.447
.5 .108 .736 .048  -.449  -.568 -.499
.6 .123 .825 151 -.376  -.546 -.500
7 .134 .891 .295  -.203  -.423 -.420
.8 141 .943 .482 .086  -.160 -.220
.9 .142  1.01 722 .496 .262 134
.95 139 1.12 .898 767 .540 .371
.98 .132 1.30 1.07 1.01 .765 .555
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Table 4.18b cont. Normalized stress intensity
factors for a semi-elliptical surface crack in a
plate under in-plane shear loading, a/h=.5, v=.3

Semi-elliptical crack, In-plane shear

Mode 3, K3/K3I0

Ly/h .2 4 .6 .8 .9 .95

| y/a

| 0. .738 .547 .467 350  .249  .184

| 1 737 .546 .465 .350  .249  .183
) .734 .542 .462 .350  .250  .181
.3 .730 .537 .455 349 .250  .179

| .4 .723 .529  .446 .348  .252  .180

| .5 714 518 .433 .344  .254  .182
.6 .702 .506 .415 .335  .253  .184
7 .685 .492 .393 319 .247  .182
.8 .661 477 .367 .290  .228  .171.
.9 .622 .465 .340 .248  .190  .142
.95 .583 .467 .336 228  .166  .121
.98 .540 .480 .348 226 .157  .111

' Mode 2, K2/K3I0(X100)
Lo/h -2 .4 .6 8 .9 .95

y/a ,
0. .000 .000 .000 .000 .000 .000
1 -.087 -.229  -.207  -.107 -.058 -.037
.2 -.168  -.450  -.412  -.213 -.116 -.071
.3 -.239  -.656  -.614  -.320 -.172 -.103
.4 -.295  -.838  -.809  -.428 -.229 -.135
.5 -.331 -.984  -.994  -.539 -.288 -.169
.6 -.341 -1.08  -1.16 -.654 -.352 -.206
.7 ~.323 -1.10  -1.30 -.777 -.427 -.252

‘ .8 -.270  -1.01  -1.36 -.904 -.515 -.309

| .9 -.177  -.732 -1.22  -1.00  -.618 -.385

| .95 -.110  -.477  -.924  -.937 -.638 -.415

| .98 -.057 -.254  -.534  -.677 -.528 -.367
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Table 4.18b cont. Normalized stress intensity

factors for a semi-elliptical surface crack in a

plate under twisting loads, a/h=.5, v=.3
Semi-elliptical crack, Twisting

Mode 3, K3/K3TO
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Lo/h 2 4 .6 -8 .9
.712 .411 .103 -.636 -2.17

.713 .413 .108 -.625 -2.15

.714 .419 .124 -.592 -2.08

717 .431 .149 -.533 -1.97

.720 . 447 .186 -.445 -1.79

.724 .468 .235 -.320 -1.53

.729 .496 .297 -.149 -1.16

.733 .531 .375 .078 -.628

.734 .577 .472 .370 .124

.724 .645 .604 .741 1.13

5 .702 .703 .713 .994 1.76
8 .667 .765 .831 1.23 2.30

Mode 2, K2/K3TO

Ly/h .2 4 6 .8 .9
.00000 . 00000 .0000 .0000 .0000
-.00097 -.00320 -.0046 -.0080 -.0179
-.00189 -.00631 -.0093 -.0160 -.0351
-.00269 -.00922 -.0138 --.0238 -.0516
-.00333 -.0118 -.0182 -.0316 -.0674
-.00373 -.0139 -.0224 --.0394 -.0831
-.00386 -.0153 -.0262 -.0473 -.0994
~-.00366 -.0156 -.0293 -.0554 -.117
-.00307 -.0144 -.0308 -.0638 -.138
-.00202 -.0105 -.0277 -.0698 -.161

5 -.00126 -.00686 -.0209 -.0650 -.164
8 -.00065 -.00365 -.0121 -.0468 -.135
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.95

-6.
-5.
-5.
-5.
.99
-4.
-3.
-2.

-4

01
92
70
39

44
63
40

-.578

1.
.59
.87

i

98

.95

.000
.045
.087
.124
.159
.193
.229

269
319
383
405
354



Table 4.19a,b Normalized stress intensity factors
for a rectangular (a), or semi-elliptical (b),
surface crack in a plate under out-of-plane shear,
in-plane shear, or twisting loads, a/h=1. , v=.3

Rectangular crack, Out-of-plane shear

Mode 2, K2/K20
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Ly/h -2 4 6 .8 .9 .95

1.00 .994 .957 .839 .730 .644

1.00 .994 .955 .836 .727 .640

1.00 .993 .949 .825 .715 .629

.999 .990 .939 .807 .696 .610

.999 .986 .923 .780 .668 .583

.999 .979 .899 .744 .630 .547

.998 .969 .864 .694 .581 .501

.997 .950 .812 .628 .517 .443

.994 .915 .731 .537 .434 .367

.985 .826 .587 .401 .315 .263

5 .968 .709 .452 .293 .226 .187

8 .919 .534 .306 .190 .145 .119
Mode 3, K3/K20(x10)

Ly/h .2 4 6 .8 .9 .95

.0000 .0000 .0000 .0000 .000 .000

.0031 .0212 .0060 -.0298 -.052 -.056

.0063 .0427 .0115  -.0599 -.103 -.112

.0095 .0646 .0157 -.0905 -.153 -.165

.0127 .0870 .0180 -.122 -.201 -.215

.0160 .110 .0177 -.153 -.245 -.260

.0192 .132 .0136 -.184 ~.284 -.297

.0221 .153 .0044 -.212 -.313 -.322

.0240 .169 -.0119 -.234 -.325 -.326

.0229 .174 -.0385 -.236 -.299 -.290

5 .0192 .167 -.0562 -.211 -.249 -.235

8 .0134 .151 -.0626 -.161 -.178 -.164
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Table 4.19a cont. Normalized stress intensity

factors for a rectangular surface crack in a plate

under in-plane shear loading, a/h=1. , v=.3
Rectangular crack, In-plane shear

" Node 3, K3/K3I0

«
~
o

«
~
Y

Lo/h -2 4 6 .8 .9

.826 .669 .625 570 .472

.826 .668 .624 .568  .470

.824 .665 .620 .564  .466

.821 659 .613 .555  .457

.816 651 .603 .543  .445

.809 .639 .589 526 .428

.796 .621 .570 .502  .404

775 .593 .541 .469  .372

.736 .549 .498 421 .327

.646 .468 .424 .340  .254

5 .540 .392 .354 .265  .191

8 .405 .308 .268 .183  .128

Mode 2, K2/K3I0(x10)

Ly/h -2 4 .6 .8 .9
.0000 .000 .000 .000  .000
-.0105  -.043 -.063 -.049 -.031
~.0211  -.086 -.125  -.096 -.060
-.0320 -.128  -.185  -.140 -.088
-.0432  -.170  -.240 -.178 -.111
-.0548  -.211  -.289  -.209 -.129
-.0665  -.248  -.327  -.229 -.140
-.0780  -.279  -.349  -.236 -.142
-.0882  -.298  -.346  -.222 -.131
~.0950  -.286  -.296  -.178 -.103

5 -.0951 -.249 -.232  -.133  -.076
8 -.0805 -.188  -.158  -.873 -.049
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t

.85

.384
.. 382
.378
.370
.359
.344
.323
.295
.255
.194
.144
.095

.95

.0000
.0200
.0392
.0567
.0715
.0827
.0893
.0898
.0825
.0639
.0468
.0302
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Table 4.19a cont. Normalized stress intensity
factors for a rectangular surface crack in a plate
under twisting loads, a/h=1. , v=.3

Rectangular crack, Twisting

Mode 3, K3/K3TO

@
~.
[\

e
- N
)

©OORND U™ W N

Ly/h -2 4 .6 .8 .9

.806 .555 .310 -.354 -2.01

.805 .554 .308  -.358 -2.02

.804 .550 .302  -.369 -2.03

.800 .543 201  -.389 -2.06

.795 .532 274 -.417  -2.10

.786 .515 251  -.455 -2.15

773 .491 .218  -.504 -2.20

.749 .455 172 -.564 -2.24

.705 .397 .104  -.830 -2.24

.605 .291 .004 -.673 -2.07

5 .487 193 -.073  -.628 -1.75

8 .336 .091  -.116  -.497 -1.27

Yode 2, K2/K3TO

Lo/h -2 4 6 N .9
.00000  .0000  .0000  .0000 .000
~.00117 -.0058 -.0126 -.0267  -.063
-.00236 -.0116 -.0250 -.0527  -.125
-.00357 -.0174 -.0369 -.0770  -.182
-.00483 -.0231 -.0480 -.0989  -.233
-.00612 -.0286 -.0579 -.117 -.274
-.00743 -.0337 -.0658 -.130 -.301
-.00871 -.0380 -.0705 -.135 -.310
-.00985 -.0405 -.0702 -.129 -.293
-.0106  -.0390 -.0603 -.105 -.234
5 -.0106 -.0339 -.0475 -.0791  -.175
8 -.0101 -.0256 -.0325 -.0522  -.114
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.95

.48
.49
.51
.55
.59
.63
.66
.62
.40
.63
.60
.25

.95

.000
.171
.337
.491
.625
.733
.804
.824
774
.613
.454
.295




Table 4.19b Normalized stress intensity factors
for a semi-elliptical surface crack in a plate
under out-of-plane shear, in-plane shear, or
twisting loads, a/h=1. , v=.3

Semi-elliptical crack, Out-of-plane shear

Mode 2, K2/K20

. O%
—e N
Y

D WWOoO N W WN
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~.
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Ly/h .2 4 .6 8 .9 .95
.996 .953 .851 .693 .576 .487
.989 .949 .848 .690 .571 .477
.969 .935 .840 .682 .557 .453
.939 .910 .826 .670 .538 .425
.888 .875 .805 .655 .518 .399
.823 . 826 776 .637 .498 .377
.740 .760 .736 .616 .479 .360
.634 .671 .680 .590 .462 .346
.499 .548 .593 .551 .442 .333
.318 .366 .437 .466 .398 .308
5 .197 .232 .295 .356 .328 .263
8 .102 .123 .161 .213 .212 .178
Mode 3, K3/K20(x10)
Ly/h .2 A 6 .8 .9 .95
.0000 .0000 .0000 .0000 .0000 .000
.0048 .0125 .0031 -.0283 -.0405 -.040
.0094 .0250 .0080 -.0523 -.0766 -.075
.0135 .0375 .0165 -.0680 -.104 -.102
.0170 .0498 .0299 -.0712 -.119 -.118
.0197 .0616 .0489 -.0583 -.116 -.120
.0215 .0726 .0733 -.0266 -.0914 -.102
.0221 .0823 .102 .0245 -.0410 -.062
.0216 .0907 .135 .0924 .0351 .005
.0196 = .0964 .170 .173 .131 .092
5 .0176 .0989 .193 .223 .187 .144
8 .01563 .101 .217 .272 .239 .188
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Table 4.19b cont. Normalized stress intensity
factors for a semi-elliptical surface crack in a
plate under in-plane shear loading, a/h=1. , v=.3

Semi-elliptical crack, In-plane shear

Mode 3, K3/K310

-
~
)
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Ly/h -2 4 6 .8 .9 .95
.800 .635 .877 .489 .382 .299

.799 .634 .875 .487 .381 .295

.795 .629 .568 .483 .376 .288

.789 .622 .557 .475 .370 .279

.780 .612 .542 .463 .362 .271

L7167 .598 .521 .446 .352 .263

.750 .582 .496 .421 .336 .253

.726 .563 .466 .389 .311 .236

.690 .541 .433 .346 .275 .2098

.627 .513 .399 .297 .227 .170

5 .567 .496 .387 .277 .204 .149
8 .493 .483 .393 .277 .200 .144

Mode 2, K2/K3I0(x10)

Lo/h .2 .4 6 .8 .9 .95
.0000 .000 .000 .000 .0000 .0000
-.0133 -.043 -.050 -.031 -.0174 -.0101
-.0259 -.083 -.099 -.063 -.0347 -.0199
-.0368 -.121 -.145 -.094 -.0519 -.0296
-.0452 -.153 -.189 -.124 -.0695 -.0396
-.0503 -.176 -.227 -.155 -.0878 -.0506
-.0514 -.188  -.257 -.184 -.107 -.0630
-.0478 -.186 -.273 -.210 -.127 -.0769
-.0390 -.162 -.265 -.228 -.146 -.0915
-.0246 -.110 -.208 -.218 -.154 -.1019
5 -.0148 -.069 -.142 -.175 -.136 -.0948
8 -.0075 -.036 -.077 -.107 -.916 -.0675
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Table 4.19b cont.

factors for

plate under twisting loads,

Semi-elliptical crack, Twisting

(=
Q
~
=
)

779
.780
.781
.782
.784
.786
.786
.783
771
737
.690
.618

=]
— e SN
™)
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Ly/h -2

c O
Ll
P

-.00147
-.00285
-.00407
-.00502
-.00561
.00577
-.00540
-.00443
-.00281
-.00170
-.00086

© OO0 DU A W
i

00 Ut

Mode 3, K3/K3TO

.4 .6 .8
.523 277 -.335
.525 .282 -.322
.632  .297 -.281
.543 .323 -.212
.559 .359 -.109
.581 .408 .030
.608 .470 .213
.642 .547 .445
.684 .644 .734
739 79 1.11
714 .884 1.37
.800 1.00 1.65

Mode 2, K2/K3TO

.4 .6 .8

.0000 .0000 .0000
.0057 -.0103 -.0210
.0112  -.0204 -.0417
.0163 -.0302 -.0618
.0207 -.03%4 -.0810
.0241 -.0476 -.0991
.0260 -.0543 -.116
.0259 -.0581 -.130
.0229 -.0571 -.140
.0158 - -.0455 -.132
.0100 -.0313 -.106
.0052 -.0107 -.0644
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Normalized stress intensity
a semi-elliptical surface crack in a
a/h=1. , v=.3

-1.71
-1.68
-1.59
-1.43
-1.19
-.863
-.413
.186
.957
1.93
2.58
3.23

-.050
-.098
-.143
-.184
-.222
-.259
-.292
-.321
-.325
-.281
-.187

.95

.27
16
.88
.45
.88
.10
.03
.567
.38

.46
.99

.133
.253
.358
.449
.533
.613
.690
.761
.791
712
.497



Table 4.20a,b Normalized stress intensity factors
for a rectangular (a), or semi-elliptical (b),
surface crack in a plate under out-of-plane shear,
in-plane shear, or twisting loads, a/h=2. , v=.3

Rectangular crack, Out-of-plane shear

Node 2, K2/K20

O«
~
Y]
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Lo/h 2 .4 .6 .8 .9 .95
1.00 1.00 1.00 .984 .955 .921
1.00 1.00 .999 .983 .952 .917
1.00 1.00 .998 .976 .942 .805
1.00 1.00 .995 .965 .925 .885
1.00 .999 .989 .947 .899 .853
1.00 997 .979 .919 .860 .809
1.00 994 .961 .877 .806 .749
.999 .987 .929 .813 .730 .668
.998 .969 .867 .714 .621 .557
_ .994 .915 .733 .548 .456 .399
5 .977 .826 .587 .407 .329 .283
8 .995 .670 .414 .268 .212 .180
Mode 3, K3/K20(x10)
Lo/h .2 4 .6 .8 .9 .95
.0000 .0000 .0000 .0000 .000 .000
.0016 .0072 .0114 -.0066 -.034 -.052
.0034 .0148 .0227 -.0151 -.071 ~-.106
.0054 .0232 .0339 -.0274 -.112 -.163
.0078 .0327 .0445 -.0456 -.159 ~-.224
.0108 .0435 .0635 - -.0718 -.214 -.290
.0145 .0556 .0591 -.108 -.276 -.359
.0191 .0678 .0579 -.1556 -.341 -.424
.0241 .0768 .0443 -.211 -.400 -.472
.0275 .0725 .0070 -.263 -.421 -.467
5 .0257 .0556 -.0279 -.267 -.381 -.405
8 .0197 .0291 -.0585 -.229 -.294 -.300

€ D © 00 ~1 DU W
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Table 4.20a cont. Normalized stress intensity
factors for a rectangular surface crack in a plate
under in-plane shear loading, a/h=2. , v=.3

Rectangular crack, In-plane shear

Mode 3, K3/K31I0

<
S~
[+Y
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Lo/h .2 4 .6 .8 .9 .95

.841 .709 .699 .706 .641 .559

.841 .709 .698 .704 .640 .558

.841 .707 .695 .700 .634 .552

.840 .705 .691 .692 .625 .542

.838 .700 .684 .680 .611 .528

.835 .693 .673 .663 .591 .508

.830 .683 .657 .639 .563 .481

.820 .664 .633 .604 .525 .444

.799 .631 .592 .551 .468 .390

.738 .556 .515 .457 .372 .303

5 .646 .472 .437 .367 .287 .228

8 .512 .381 .345 .263 .196 .153

Mode 2, K2/K3I0(x10)

Lo/h .2 .4 .6 .8 .9 .95
.0000 .000 .000 .000 .000 .000
-.0053 -.026 -.054 -.070 -.061 -.049
-.0110 -.054 -.110 -.140 -.122 -.098
-.0176 ~-.085 -.170 -.210 -.180 -.143
-.0256 -.122 -.236 -.278 -.235 -.184
-.0357 -.165 -.306 ~-.343 -.282 -.219
~.0484 -.216 -.380 -.399 -.317 -.242
-.0643 -.273 -.447 -.435 -.334 -.250
-.0829 -.329 -.490 -.435 -.320 -.234
-.101 ~.359 -.463 -.366 -.256 -.182
5 ~-.106 -.337 -.383 -.279 -.189 -.133
8 -.109 -.274 -.272 -.185 -.123 -.085

O © © 00 ~3 D U WD
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Table 4.20a cont. Normalized stress intensity
factors for a rectangular surface crack in a plate
under twisting loads, a/h=2. , v=.3

Rectangular crack, Twisting

Mode 3, K3/K3TO

Ly/h .2 4 .6 .8 .9
y/a
0. .823 .608 .434 .012  -1.15
.1 .823 .607 .433  -.008 -1.16
.2 .822 .605 .428  -.004 -1.19
.3 .821 .602 .421  -.025 -1.23
.4 .819 .596 .409  -.057 -1.30
.5 .816 .587 .31  -.101 -1.39
.6 .810 .573 .364 -.163 -1.51
.7 .799 .549 .323  -.250 -1.67
.8 .776 .504 .256 -.370 -1.85
.9 .708 .406 .132 -.532 -1.99
.95 .607 .300 .023  -.597 -1.88
.98 .448 .165 -.077  -.551 -1.51

Mode 2, K2/K3T0

Lo/b -2 .4 .6 .8 .9
y/a
0. .00000 .0000 .0000 .000 .000
.1 -.00059 -.0035 -.0103  -.031 -.086
.2 -.00123 -.0073 -.0211  -.083  -.172
.3 -.00197 -.0115 -.0326  -.095  -.258
4 -.00287 -.0164 -.0453  -.128  -.342
.5 -.00399 -.0223 -.0582 -.160  -.421
.6 -.00541 -.0292 -.0737 -.190  -.489
.7 -.00718 -.0369 -.0874 -.212  -.534
.8 -.00926 -.0446 -.0967 -.218  -.534
.9 -.0113  -.0488 -.0923 -.189  -.448
.95 -.0118  -.0458 -.0767  -.147  -.340
.08  -.0121 -.0373 -.0546 -.098  -.224
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5

.53
.55
.61
71
.85
.03
.26
.54
.81
.78
.18
.96

| ek ek b b |

.95

.000
.251
.502
.748
.986
.20
.38
.49
.47
.21
.906
.591
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Table 4.20b Normalized stress intensity factors
for a semi-elliptical surface crack in a plate
under  out-of-plane shear, in-plane shear, or
twisting loads, a/h=2. , v=.3

Semi-elliptical crack, Out-of-plane shear

Kode 2, K2/K20

-«
~.
&

Ly/b .2 4 .6 .8 .9 .95
.999 .986 .950 .876 799  .723

.992 .981 .946 .870  .789  .704

.972 . 964 .931 .852  .760  .658

.938 .935 .906 .823  .718  .601

.889 .893 .871 .786  .670  .544

.824 .837 .823 741 619 .491

.740 .762 761 . .687  .567  .442

.634 .665 .680 .623  .512  .395

.498 .536 .568 .538  .446  .344

.317 .354 .395 403  .347 271

5 .196 .224 .259 .281 .252  .201
8 .102 .119 .140 .159  .147  .120

Node 3, K3/K20(x10)
Lo/h .2 4 .6 .8 .9 .95
y/a

0. .0000  .0000 .000  .0000 .000 .000
1 .0060  .0189 .015 -.0257 -.055 -.085
.2 .0116  .0373 .032 -.0446 -.101  -.118
.3 .0166  .0550 .052 -.0504 -.120  -.151
.4 .0206  .0712 .076 -.0383  -.131  -.160
.0232  .0851 .103 -.0515  -.105  -.139
.0243  .0959 134 .0489 .046  -.087
.0237  .1023 163 .119 .039  -.006
.0213  .1031 189  .197 .142 .094
.0170  .0970 207 .27 .244 .196
5 .0140  .0901 .214  .309 .296 .247
8 .0113  .0828 218 .340 .338 .284

©© O~
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Table 4.20b cont. Normalized stress intensity

factors for a semi-elliptical surface crack in a

plate under in-plane shear loading, a/h=2. , v=.3
Semi-elliptical crack, In-plane shear

Mode 3, K3/K3I0

Lo/h 2 .4 .6 .8 .9 .95
y/a
0. .829 .687 .659 .623 .532 .442
.1 .828 .686 .656 .619 .528 .434
.2 .824 .681 .647 .608 .516 .417
.3 .817 .672 .631 .590 .497 .395
.4 .807 .660 .610 -~ .564 .474 .371
.5 .792 .644 .583 .531 .444 .346
.6 772 .625 .550 .489 .407 .317
7 .744 .602 .513 .440 .362 .281
.8 .701 .573 .472 .384 .309 .237
.9 .624 .530 .428 .325 .251 .188
.85 .549 .493 .403 .298 .224 .166
.98 .467 .453 .387 .287 .213 .157

Mode 2, K2/K3I0(x10)

Lo/h .2 .4 .6. .8 .9 .95
y/a
0. .0000 .000 .000 .000 .0000 .0000
.1 -.0125 -.043 -.059 -.041 -.0181 -.0038
.2 -.0243 -.084 -.116 -.083 -.0384 -.0106
.3 -.0349 -.123 -.172 -.127 -.0626 -.0224
.4 -.0436 -.157 -.226 -.174 -.0919 -.0403
.5 -.0493 -.183 -.274 -.222 -.127 -.0646
.6 -.0512 -.199 -.310 -.268 -.165 -.0943
7 -.0482 -.198 -.326 -.306 -.204 -.127
.8 -.0393 -.172 -.308 -.320 -.233 -.156
.9 -.0241 -.114 -.226 -.275. -.223 -.160
.95 -.0141 -.069 -.146 -.197 -.173 -.131
.98 -.0068 -.035 -.076 -.110 -.102 -.0806
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Table 4.20b cont. Normalized stress intensity

factors for a semi-elliptical surface crack in a

plate under twisting loads, a/h=2. , v=.3
Semi-elliptical crack, Twisting

Mode 3, K3/K3T0

Ly/h .2 .4 .6 .8 .9
y/a ‘
0. .811 .587 .401 -.020 -1.03
.1 .811  .589 .406 -.006 -.999
.2 .812 .596 .421 .035 -.895
.3 .813 .607  .445 .106 -.719
.4 .814 .624 .481 .208 -.463
.5 .815 . 646 .528 .345 -.115
.6 .813 .673 .588 .521 .343
7 .806 .706 .665 .743 .927
.8 .788 .745 .763 1.02 1.66
.9 .738 .784 .893 1.39 2.60
.95 .673 .792 .980 1.65 3.25
.98 .590 .776 1.056 1.89 3.84

¥ode 2, K2/K3TO

Ly/h -2 4 .6 .8 .9
y/a
0. .00000 .0000 .0000 .0000 .000
.1 -.00133 -.0052 -.0104 -.0245 -.065
.2 -.00261 -.0103 -.0208 -.0490 -.128
.3 -.00376 -.0153 -.0312 -.0732 -.186
.4 -.00473 -.0198 -.0416 -.0973 -.240
.5 -.00540 -.0237 -.0514 -.121 -.291
.6 -.00668 -.0264 -.0600 -.144 -.340
7 -.00541 -.0270 -.0655 -.163 -.384
.8 -.00447 -.0242 -.0643 -.173 -.412
.9 -.00277 -.0165 -.0494 -.152 -.383
.95 -.00163 -.0102 -.0325 ~-.111 -.296
.98 -.00079 -.0052 -.0172 -.0624 -.176
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.95

.75
.65
.34
.87
.23
.37
.228
.24
11
.48
.07
.48

.95

-.187
-.354
-.496
-.618
-.729
-.833
-.928
-.994
-.941
-.749
~.458
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Table 4.21a,b Normalized stress intensity factors
for a rectangular (a), or semi-elliptical (b),
surface crack in a plate under out-of-plane shear,
in-plane shear, or twisting loads, a/h=4. , v=.3

Rectangular crack, Out-of-plane shear

Node 2, K2/K20

. O
.
)

-«
~
)

Ly/b -2 4 6 8 9
1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00 1.00

1.00 1.00 1.00 1.00  1.00

1.00 1.00 1.00 1.00 .998

1.00 1.00 1.00 .999  .992

1.00 1.00 1.00 .993  .978

1.00 1.00 .997 .978  .952

1.00 .999 .988 .947  .902

1.00 .994 .961 .876  .806
.998 .967 .866 713 .620

5 .982 .914 .732 .547  .455
8 1.03 .799 .543 .368  .295
Mode 3, K3/K20(x100)

Ly/b -2 4 .6 .8 .9
.0000  .000 .000 .000 .000

.0044  .021 .047 .066 .027

.0094  .044 .098 .130 .036

.0157  .074 .161 .186 .004

.0245  .115 .241 221  -.106

.0378  .175 .346 207  -.348

.0594  .268 .479 .085  -.803

.0960  .411 627  -.240 -1.57

.158 .616 720  -.910 -2.70

.250 .809 .526 -2.01  -3.97

5 .283 .760 131 -2.57  -4.23
8 .249 .493  -.380 -2.60  -3.64
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.95

.999
.993
.982
.962
.925
.862
.752
.558
.399
.254

.95

.000

-.038
-.104
-.234
-.473
-.879

-1.53
-2.47
-3.70
-4.81
-4.77
-3.88
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Table 4.21a cont. Normalized stress intensity

factors for a rectangular surface crack in a plate

under in-plane shear loading, a/h=4. , v=.3
Rectangular crack, In-plane shear

Mode 3, K3/K3I0

¢ O%
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Lo/h 2 4 .6 .8 .9 .95
.844 .722 .735 797 .782 .728
.844 .722 .734 .796 .781 .726
.844 .722 .733 .793 .776 .720
.844 .721 .731 .788 .768 .711
.844 .720 .727 779 .755 .696
.843 L7117 .722 .766 .737 .675
.842 .713 .713 .747 711 .646
.838 .704 .697 .718 .672 .604
.830 .686 .668 .669 .611 .541
.799 .633 .600 .573 .502 .432
5 737 .556 .521 .474 .398 .334
8 .621 .458 .424 .354 .281 .229
¥ode 2, K2/K3I0(x10)
Lo/h .2 .4 .6 .8 .9 .95
.0000 .0000 .000 .000 .000 .000
-.0014 -.0068 -.016 -.031 -.038 -.041
-.0029 -.0146 -.034 -.064 -.080 -.083
-.0049 -.0247 -.058 -.105 -.126 _~.129
-.0077 -.0388 -.090 -.156 -.181 . -.181
-.0120 -.0604 -.136 -.222 -.245 -.236-
-.0191 -.0946 -.205 -.306 -.317 -.293
-.0313 -.150 ~.303 -.404 ~.388 -.343
-.0526 -.237 ~.429 -.493 -.435 -.364
~.0860 -.345 -.526 -.499 -.399 -.316
5 -.103 -.372 -.491 -.411 -.310 ~-.238
8 -.114 -.336 -.373 -.282 -.204 -.153
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Table 4.21a cont. Normalized stress intensity
factors for a rectangular surface crack in a plate
under twisting loads, a/h=4. , v=.3

Rectangular crack, Twisting

Mode 3, K3/K3T0

Ly/h .2 4 .6 .8 .9
y/a
0. .826 .624 .492 .259  -.405
.1 .826 .624 .491 .257  -.413
.2 .826 .624 .490 .248  -.438
.3 .826 .623 .486 .233  -.483
4 .825 .621 .480 .210 -.551
.5 .825 .618 .471 .175 -.648
.6 .823 .612 .456 .123  -.785
.7 .820 .601 .430 .044 -.979
.8 .810 .77 .381 -.085 -1.26
.9 .776 .507 .269  -.311 -1.67
.95 .708 .411 .145 -.484 -1.85
.98 .570 .261 -.006 -.570 -1.72

Mode 2, K2/K3TO

Ly/h -2 .4 .6 .8 .9
y/a
0. .00000  .00000 .0000 .000 .000
.1 -.00015 -.00092 -.0030  -.012 -.037
.2 -.00033 -.00197 -.0064  -.024 -.079
.3 -.00055 -.00331 -.0107 -.040  -.128
4 -.00086 -.00522 -.0167  -.061 -.191
.5 -.00134 -.00812 -.0255 -.090  -.271
.6 -.00214 -.0127  -.0387  -.127 -.372
.7 -.00350 -.0202 -.0578  -.175 -.488
.8 -.00587 -.0319  -.0828  -.224 -.593
.9 -.00961 -.0467  -.1031 -.240 -.599
.95  -.0115 -.0505 -.0973  -.205 -.492
.98  -.0127 -.0457  -.0745  -.144 -.335
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.9

5

.48
.51
.58
.70
.88
.13
.47
.92
.54
.28
.39
.65

.95

.000
.122
.255
.412
.608
.845
.13
.45
.70
.66
.34

-.895




o

O O © 00 ~I D U W DD st o

Table 4.21b Normalized stress intensity factors
for a semi-elliptical surface crack in a plate
under out-of-plane shear, in-plane shear, or
twisting loads, a/h=4. , v=.3

Semi-elliptical crack, Out-of-plane shear

Mode 2, K2/K20
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Ly/h .2 .4 .6 .8 .9
1.00 .997 .988 .965  .932
.993 .991 .982 .956  .916
.973 .973 .964 .930  .872
.939 .943 .935 .80  .809
.890 .899 .893 .838  .737
.824 .840 .838 776 .662
.740 .763 767 .703  .586
.633 .663 .675 .618  .507
.497 .532 .553 513 .419
.316 .349 .376 .362  .301
5 .196 .221 .244 .244  .206
8 .102 117 .132 136 .117
Mode 3, K3/K20(x10)
Ly/h -2 4 .8 .8 .9
.0000  .0000  .000  .0000  .0000
.0049  .0170  .020 -.0077 -.0408
.0095  .0336  .040 -.0097 -.0700
.0135  .0492  .062 -.0144 -.0790
.0167  .0632  .086  .0201 -.0638
.0188  .0750  .110  .0553 -.0246
.0194  .0826  .134  .102 .0344
.0183  .0850  .153  .154 .105
.0154  .0800  .162  .201 .173
.0108  .0660  .156  .230 .223
.95 .0097  .0585  .145  .228 .230
8 -.0030  .0244  .120  .254  .280
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.889
.860
.788
.699
.612
.531
.458
.390
.319
.230
.159
.092

.95

.000
.063
.107
.123
.109
.068
.007
.065
.134
.186
.196
.244



Table 4.21b cont. Normalized stress intensity
factors for a semi-elliptical surface crack in a
plate under in-plane shear loading, a/h=4. , v=.3

Semi-elliptical crack, In-plane shear

Mode 3, K3/K3I0

-«
~
o

O O 00 ~1 O U1 LB -

“«
~
'Y

Ly/h -2 4 .6 .8 .9 .95
.840 712 .709 728  .672  .590
.839 .710 .705 722 .664  .577
.835 .704 693  .704  .640  .545
.828 .695 .875 675  .606  .503
.817 .682 .649 635  .562  .458
.802 .666 .616 .586  .511  .411
.781 .645 .579 .529  .453  .360
.751 .620 .537 466  .390  .306
.705 .587 .491 .400  .323  .249
.622 .535 .439 334  .257  .193
5 .540 .485 .403 .301  .226  .166
8 .451 .427 .370 279  .208  .156
Mode 2, K2/K3I0(x10)
Ly/h -2 4 6 .8 .9 .95
.0000  .000  .000 .000  .0000  .0000
-.0079 -.027 -.039 -.025  .0021  .0237
-.0156 -.053 -.078  -.053 -.0031  .0349
-.0227 -.079 -.117  -.087 -.0206  .0279
-.0290 -.103 -.158  -.128 -.0524  .0283
-.0338 -.125 -.197  -.176 -.0971 -.0369
-.0365 -.142 -.233  -.227 -.151  -.0863
-.0360 -.149 -.257  -.273 -.205  -.138
-.0306 -.137 -.254  -.295 -.242  -.178
-.0190 -.094 -.191  -.249 -.222  -.174
5 -.0132 -.062 -.126  -.172 -.161  -.130
8 .0064  .000 -.039 -.079 -.0810 -.0675

DWW NI U W)=
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Table 4.21b cont. Normalized stress intensity
a semi-elliptical surface crack in a

a/h=4. , v=.3

factors for

plate under twisting loads,

Semi-elliptical crack, Twisting

-«
R N
)

.822
.822
.823
.824
.826
.826
.824
.816
.795
.738
.664
.572

€O © © 00 ~3 D U W)

00 o

Ly/h -2

<
~.
»

.00000
-.00082
-.00161
-.00237
-.00306
-.00363
-.00399
-.00401
-.00350
-.00222
-.00155

.00068

O O O 00 ~1 O U ix WD = o

oo n

Mode 3, K3/K3TO

.4 .6 .8
.615 .470 .211
.617 .475 .224
.624 .489 .263
.636 .513 .330
.653 .548 .427
.676 .594 .587
.704 .655 .724
.738 .733 .936
776 .832 1.21
.806 .960 1.58

.794 1.03 1.83
.749 1.06 2.02

Mode 2, K2/K3TO

.4 .6 .8

.0000 .0000 .0000
.0028 -.0052 -.0116
.0058 -.0107 -.0238
.0088 -.0167 -.0372
0119  -.0235 -.0529
.0150 -.0313 -.0719
.0179  -.0399 -.0949
.0198 -.0480 -.121
.0194 -.0522 -.144
.0141 -.0434 -.136
.0095 -.0287 -~-.100
.0004 -.0104 -.0480
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.425
.391
.290
.119
.129
.464
.898
.45

.16

.72
.24

.033
.066
.098
.133
.173
.223
.284
.344
.345
.265
.138

© 00N -

.95

.21
.11
.82
.37
.736
.107
.20
.59
.34
.65
.24
.53

.95

.000
.106
.199
.281
.357
.442
.547
.680
.822
.844
.664
.360



Table

out-of-plane
loads, v=.3

a/h .5
Lo/h
.999
.998
.952
.883
.790
.685
.576
.467
.410
.350
.277

owgoo\xo:m.hwwﬁ-t

o

'Y
~

o

(42}

L

=)
- N
l=a

. 899
.738
.619
. 547
.503
. 467
.420
.350
. 304
.249
.184

&:&:gzﬁ>;xb:uwh-o:ua

o

)
~
-
[94]

L

- Q
[
=

. 895
.712
.550
.411
.273
.103
-.152
-.636
5-1.13

€O © 0000 ~I O U LD

4.22 Normalized stress intensity factor at
the center of a semi-elliptical crack subjected to
in-plane shear, and twisting

shear,

Out-of-plane shear, Mode 2, K2/K20

1. 1.5 2. 3. 4. 5. 6.
1.00 1.00 1.00 1.00 1.00 1.00 1.00
.996 .998 .999 .999 1.00 1.00 1.00
.982 .991 .995 .998 .999 .999 .999
.9563 .976 .986 .994 .997 .998 .999
.909 .9852 .972 .987 .993 .996 .997
.851 .918 .950 .978 .988 .992 .995
.780 .873 .920 .963 .979 .987 .991
.693 .811 .876 .938 .965 .978 .985
.640 .769 .844 .919 .952 .969 .979
.576 .714 .799 .889 .932 .954 .968
.487 .629 .723 .832 .889 .921 .942

In-plane shear, Mode 3, K3/K3I0

1. 1.5 2. . 4. 5. 6.
.927 .935 .939 .942 .943 .943 .943
.800 .820 .829 .837 .840 .842 .843
.698 .727 .740 .752 .758 .760 .762
.635 .670 .688 .704 .712 .716 .719
.600 .642 .665 .688 .699 .706 .710
.577 .629 .659 .692 .709 .720 .727
.547 .613 .653 .700 .726 .743 .755
.489 .570 .623 .688 .728 .754 .773
.443 .529 .588 .664 .711 .744 .767
.382 .470 .532 .617 .672 .711 .740
.299 .380 .442 .530 .590 .635 .670

Twisting, Mode 3, K3/K3TO

1. 1.5 2. 3. 4. 5. 6.
.924 .932 .936 .939 .940 .940 .941
.779 .801 .811 .819 .822 .823 .824
.642 .674 .689 .702 .708 .710 .712
.523 .566 .587 .606 .615 .619 .622
.410 .467 .497 .526 .539 .547 .552
.277 357 .401 .447 .470 .484 .493
.074 193 .263 .341 .382 .408 .425

-.335 -.144 -.020 .128 .211 .264 .300
-.766 -.508 -.330 -.109 .020 .103 .162

-2.17 -1.71 -1.32 -1.03 -.654
5 -6.01 -5.27 -4.43 -3.75 -2.81
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00
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.998

.995
.992
.988
.982
.965

.944
.843
.764
.722
.716
.736
.770
.799
.800
.781
.721

.941
.825
.714
.626
.559
.504
.447
.347
.238

-.425 -.273 -.165 -.021
-2.21 -1.79 -1.49 -1.09 -.823

o

10.

10.

.944
.844
.765
.724
.719
.741
.780
.815
.821
.809
.757

10.

.941
.826
.715
.628
.562
.511
.460
.377
.286
.071
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Table 4.23 The effect of Poisson’s ratio on the
normalized stress intensity factor at the center
of a semi-elliptical crack subjected to out-of-
plane shear, in-plane shear, and twisting loads,

a/h=1.

Out-of-plane shear In-plane shear Twisting

Mode 2, K2/K20 Mode 3, K3/K3I0 Mode 3, K3/K3TO

v 0. .3 .5 C. .3 .5 C. .3

1.00 .1.00 1.00 .935 .927 .921 .932 .924
.994 .996 .997 .820 .800 .787 .801 .779
.974 982 987 .725 .698 .682 .673 .642
.836 .953 .966 .666 .635 .617 .562 .523
.878 .909 .932 .634 .940 .580 .457 .410
.806 .851 .886 .615 .577 .555  .337 .277
.721 .780 .827 .591 .547 .521 .155 .074
.624 .693 .751 .541 .489 .460 -.216 -.335
.569 .640 .703 .498 .443 .414 -.613 -.766

.5

.918
.766
.623
.500
.382
.242
.028
-.398
-.844

.503 .576 .643 .437 .382 .353 -1.50 -1.71 -1.82
.416 .487 .554 .350 .299 .273 -4.85 -5.27 -5.44
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Table 4.24 The LSM approximation to the stress
intensity factor at the corner of a semi-
elliptical surface crack subjected to out-of-plane
shear, in-plane shear, and twisting loads, a/h=1,
v=.3.

OUT-OF-PLANE SHEAR  IN-PLANE SHEAR - TWISTING

ky(h/2) ky(0)  ky(h/2) kg(0)  ky(h/2) ky(0)
03I§7 a3f§“ 04I;, a4I§" aSI;“ ola

[
(=)
~
= od

5
.000 .005 .124 -.000 .116 -.000
.000 .033 | .237 -.0005 .206 -.0005
.001 .074 .336 -.002 .272 -.002
.004 .125 .421 -.005 .317 -.004
.009 .186 .496 -.009 .348 -.006
.017 .256 .563 -.014 .368 -.009
.028 .332 .625 -.020 .380 -.012
.042 .416 .682 -.025 . 387 -.014
5 .050 .461 .708 -.028 .389 -.015
.059 .507 .735 -.030 .390 -.016
5 .069 .556 .761 -.032 .390 -.017

€ © 0000 3 U WD
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Figure 4.1 Comparison of mode 1 line-spring model
with and without transverse shear deformation to

Newman’s and Raju’s finite element solution, Ref.
(33], for a/h=2/3, v=.3
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with and without transverse shear deformation to
Newman’s and Raju’s finite element solution, Ref.
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Figure 4.5 Geometry of the bending contact
problem.
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Figure 4.6 Line-spring model approximation to the
stress  intensity factor at the corner of
rectangularly shaped surface crack, a/h=1., v=.3.
The arrow points to the through crack limit.
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Figure 4.7 Line-spring model approximation to the
stress intensity factor at the corner of 1/4 power
"semi-elliptical®™ surface crack, a/h=1., v=.3
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Figure 4.8 Line-spring model approximation to the
stress intensity factor at the corner of a through
crack subjected to bending allowing for contact
stresses as compared to the value assuming no
contact, a/h=1., v=.3
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Figure 4.9 The LSM approximation to the stress
intensity factor at the corner of a semi-
elliptical surface crack, a/h=1., v=.3. The finite
element results are from Ref. [33].
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Figure 4.10 Normalized stress intensity factor
profiles for the mode 2,3 line-spring model for a
rectangular crack subjected to out-of-plane shear,
a/h=1., v=.3
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Figure 4.11 Normalized stress intensity factor
profiles for the mode 2,3 line-spring model for a
rectangular crack subjected to in-plane shear,
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Figure 4.12 Normalized stress intensity factor
profiles for the mode 2,3 line-spring model for a

rectangular crack subjected to twisting, a/h=1.,
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Figure 4.13 Normalized stress intensity factor
profiles for the mode 2,3 line-spring model for a
semi-elliptical crack subjected to out-of-plane
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CHAPTER 5

Through Cracks in Shallow Shells

In this chapter the singular integral equations for a series of
collinear cracks in a shallow shell which allows for transverse shear
deformations will be derived. The crack will be assumed té lie along
a principal line of curvature which uncouples.the symmetric (que 1)
from the skew—symmetfic (modes 2,3) formulation. The emphasis will be
. on crack interaction for some common geometries. Also the equationms

are needed for the part-through crack problem of the next chapter.

5.1 Formulation
The governing equations, both dimensional (Eqns. 5.1a-16a,18a,

192) and non-dimensional (Egns. 5.1b—16b,18b,19b)’are listed below.

The dimensional relationships are defined in Appendix A. From
equilibrium, |
oN oN oN
L - =0 (5.1a,b)
1 2
oN ON oN oN
ax:2 * axzz =0, _gfl * 5;11 =0, (5.22,b)
gzl + ng * 59'[%Z'N11] * 59"[%Z'N12]
X X0 x, 8x, x, \0x,
8 (32 B2y ).z “o
r (M) o Batay) aleyxp) =0,
2771 2772
$+%+M{a_[g_z_,q )+ 22 ).
Ox oy 5 Ox (Bx xx Ox 0y xy
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3 (32, ), (02 _
* ay[anny] ¥ ay[ayNyy] + q(x,y) } =0 , (5.3a,b)
oM oM '
3 L2V =0,
Xy 6x2 RS I
auxx auxy 5
ox dy ~ 12(1+v) Vx =0 , (5.4a,b)
oM oM
- 12 .22 v _o ,
Xy 6x2 2
By My s .
Bx T By 13(Ln) 'y 0’ - (5.53,b)

where- q(x,y) is normal loading to the plate surface and Z(x,y) is the
equation of the: mid-plane of the shell. The other variables are

standard shell quantities (see Figs. 2.1,2.3). From kinematical

considerations,
Bu du
__1b 9Z_ ""3D _Bu 3L dw
117 8x, * 0x, Ox, °’ €xx ~ 8x ' 3x 3x (5.§a,b)
du Ou
_%up 8z %3 _3v 3L Bw
€22 = Bx, ' 8x,08x, ' yy Oy ' Bydy ’ (5.7a,b)
2 2 772
ey =5 | Supp , %ugp , a2 %"ap | 0z a“sn]
- ’
12 2 axz axl axl axz axz axl
_1[8u v , Ldw, 3Ldw
eXY 219y T ax tax dy * dy ox ] ’ (5.82a,b)
du 4
3D )
9; = 0x, *h o 0= 53 + P, S o (5.9a,b)
du
_ Yugp  Bw
b2=8x, P2 Oyt Ay (5.10a,b)
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where 91 and 92 are the total rotations of the normals. For classical
theory they are zero showing that normals to the shell surface stay

normal, i.e. there is no deformation transversely. The constitutive

'relations(Hooke4s- law) ?g.r—.e‘;,':g SRR PR b L SRR A e st

1 V A] ra
hfll = E (Nll - VN22) ’ €xx = Nxx - I./Nyy ’ , (5.11a,b)
_1 N e |
hegg = § (Npg - #Nyp) 5 €y = Ny = Wy (5.12a,b)
Ly _ - |
hepo =35 Mg+ Exy = A0IN | (5.132,b)

where E is Young’s podulus and v is Poisson’s ratio. From bending,

o op
_ s § 2
M, =D [ B, * Vox, ] ,
o,  0p
b= —1— |52 gt ] , (5.14a,b)
X 12(1-0%) y
op 0p
- —2, 1
M22 =D [ ax2 * axl ] !
) 1 - b:p :p ] , (5.15a,b)
YWoo12(1-0%) X y
op aﬂ
_b(1- V) 1 2
My, = [ * ]
op BP
_ 1 x
uxy T~ 24(1+v) L Oy ] (5.16a,b)
where
3
D= ——Eb—z— . (5.17)
12(1-v7)

The linear transverse shear stress-strain relationships are,
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6=V o 6, =V, . (5.18a,b)
6. -Lv. 5 -y (5.19a,b)
2 hB 2 Ty y ) !
where
_ __5E
B = 12(w) - (5.20)

From here on only non—dimensional variables will be used. Define

¢(x,y) such that

2 2 2
N =28 oy ¢y 3% (5.21)
XX ay2 Yy ax2 Xy 0x0y

Introduce the new unknowns Q(x,y) and ¢(x,y) defined as follows,

3p. op
1Y) =50 - 5 (5.22)
op, 0p
ey = e[ g e gt | - meon (5.23)
where |
fc5Eay (5.24)

Also it will be assumed that Z(x,y) is limited to the following,

2 2 a2

3 -1 1
= — = — 5.
R, * Bxdy "R (5.25)

Ox

(W]

1 o)

R1 ’ Oy

(]
o]

()
[

thus making the curvatures constant. For convenience the following
constants are introduced,

4
1

4

A= 12 aR)?, g - 12(1-4%) (b/Ry)?

2

2 2 -
Mg = 1204 B/R N2, 2= 1208, 4222 (5.26)

If all but Xl are zero, an axially cracked cylinder results; if Xz is
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the 6nly non-zero quantity, then the crack will be circumferential,
see Fig. 2.1. R12 is needed when the crack does not lie along a
principal line of curvature. After some algebra Egns. 5.1-19 are

reduced to the following equationms,

2

4, 1 (.2 2 @ 2.9 |

V' - A5 - 2\3o 5= +* Ap—5 ( w(x,y) =0 , (5.27)

X2 { 16y2 12 dx0y 2ax2 }
2 2 2
4 .2, 2f.28° .2 @ 2.3
Ve 22001 { Mp,2 T Pz By M2y 2 } 40 =
Ma-oHax,y (5.28)

A% -y -w=0 , (5.29)
s v -g=0 . (5.30)

Now let q(x,y) = O and also confine the crack to a principal line of

curvature by setting *12 = 0. This reduces Eqns. 5.27,28 to

4, 1 (.28 .28
v - L {228 028 Y wiy =0 (5.31)¢
A oy ox
vie o x2(1-xv2){ \2.8° , 202 } (x,y) = 0 (5.32)
5,2 2,2 $(x,y) =0 . '

These last four equations will be solved by using Fourier transforms.

First Eqns. 5.31,32 are reduced to one equation in ¢(x,y),

vt + (er?) i3 -0 (5.33)
where
2 2
2 ,298° 282
vy = 2 (5.34)
oy ox

The Fourier transform is defined for any function as
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1 ("

F(x,y) = o J F(x,a) e Y2 4y ,
00

+00

j F(x,y) eV dy . (5.35)

F(x,a)

The transforms of the various operators of Eqn. 5.33 are

2= _
Pr VR ) =S o F
d“x
4 E 4
rrpvip ) = 4F 2a2§;E . ofF
d'x dx
=6 4 20
SIRE S BRI S b ST S
dx d x d x d“x
202, 1 _ (4 . 2.2 2d%F 4.4
FT[ VVsF ] = x2d4x 22 2 T

FT[ VoVavar ] = aa4E F . @AH2:% x4)
248,

4 4 224d’F 6, 4
(A1a+2x 1o )2 —a)\lF . (5.36)

The Fourier transform of Eqn. 5.33 is

8~ 4
dé _ (4% 0 )—-ﬂ v (G0t age 20207 et e
& 1'2 2*) 4

- (2% 2522 ajets 2052 4)——! (@®+ atixa A =0,

(5.37)

which has the solution

m.X

4
= ;E;Rj(a)e I, x>0 ,
J:
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_ 8 m.x
f(x,0) = 2R (e’ , x<O0 | (5.38)
j=5

where

2.1/2 .
= ‘(Pj"'a ) / , 3=1,2,3,4 ,

oy, sseTE (5.39)

m.
J

The roots Py j=1,2,3,4 are obtained from the solution of the

following characteristic equation,

4 43 2,2 2 4 2 4, 2
P - nxzp + (2xk1x2a - anza + xz)p +
122 2 4 2 4 2 4 2,2, 2
+ (2&X1X2a - nxza - nxla + 2k2 - 2X1X2)a P+
L 020%H%% -0 . | (5.40)
2 1
This quartic is solved numerically. For large and small a an

asymptotic expansion for the roots is given in section J.1 of Appendix
J. Since the crack has been assumed to lie on a principal line of
curvature, only the portion of the shell for x>0 need be considered.

The transformed solutions of the other unknowns appearing in Eqnms.

5.29-32 are:
fi(x,a) = A(@)e™™ , x>0 , (5.41)
_ 4 m.X
¥(x,a) = 3 R (2)K;(a)e I, x>0, (5.42)
.=1 |
_ 4 m.X
w(x,a) = > _R.(a)K.(a)(sp.-1)e I , x>0 , (5.43)
i j ] -
where
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1/2
r= _[ a® « n(l?u) ] ’ (5.44)
p?kz '
K. (a) = PR = - (5.45)
J (npj-1)(mjx2-x1a )

The next step is to express the shell quantities in terms of A(a) and
Rj(a), j=1,2,3,4, which are unknowns in the problem to be determined

by boundary conditions~as yet unspecified. These expressions are

-1 ("2 |
Nxx= 2r ) :Z:R (a)e 1ay da , o 7 (5.46)
Lt 5 ey .
N,\= 3 I_mgégijj(a)e Ve, (5.47)
i x -iay
&f§;JaZjamn e 10V 4o | (5.48)

- .
P, = P J eA(e)e™ e *Wda +
—00

2 2x
4 .' .
;1 J ;E:mJKJRJ(a)e e Mo (5.49)
po= et L I+er(a)erxe_iayda -
y 2 2r —®
- é; J ajE:K R (a)e e iayda ’ (5.50)
11 (& 2 2 "3 -iay
a2 2 @)K R (@e ? e da
1-n? i (" -ia
S EASN A [T g (g)e™e 1Y 4o (5.51)
ot - 2r)_,
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+00 4
11 mX
by =45 5 J j;; -a )K Ry(@)e I e W da
—éi‘i—y)— J arA(a)erxe lay da + (5.52)
_=(1-y) i J o iay
Mxy' = )‘4 or angKJRJ (a)e ‘da

__(l_l/)_ 1 J (a +:[~2)A(tz)erxe—iay da |, -(5-53)

X

V. = Eilégl %% aﬁ.(tz)erxé_my da +
-~ 00 .

.x o .
J ZmeJKJRJ(a)e e % da , (5.54)
_(1- V[ rx _-iay
rA a)e e da +
y o 2, . (a)
1 i (7
S S S :my
5 I_w aZZZpJKJaJ(a)e da , (5.55)
Ou i +
5;xﬂ)=2m[w { o /x)§:R(@ nK, (sp;-1) - 53] } ¢ *Fdo
(5.56)
v _1 ("$2 ~iay
dylx+0 = 27 J_,;E;mjkj(a) e " das
2 -1 w 4 -ia
cymE R - agggkj(a)Kj(&pj—l) e 1Y gq | (5.57)
1 (" 2 Bw
I -iay W
5= f j{:m Ri(a) e da + y(\/M 57|00 - (5.58)
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5.2 Symmetric Loading, Mode 1

There are currently five unknowns in the problem, A(a), and Rj(a)
for j=1,2,3,4. The first step is to reduce these to two unknowns by

using the symmetry conditions,

M (0,y) =0 E | (5.60)
Vx(O,y) =0 . (5.61)

Then -replace the remaining two unknowns with the crack surface

displacements,
(1) = ulxg)/h = u(0",x5)/h , (5.62)
u(y) = B, (xy) = B, (0",x,) . | (5.63)

The equations that relate ui(y) to the original unknowns are:

Afe) = 1a(1 l/) ;meJKJRJ ’ : ‘ (5.64)

i KR { ["(1"’)“2+ 1] - 02(1-1/)} =0 (5.65)

5=1m5 i P =Yoo -

4 -1

J-‘6—1“'51(3'113‘{ wp;- 1 } = %@ (5.66)

4 .

2 mR; =0, (5.67)

=

4 kp.-1 . :

2, i " 2] _

RN P R R .

where
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+00

q (a) = aJ uk(t)ei"t dt , k=1,2

The solution to Eqns. 5.65-68 is

where

2
k=1

T3 %
= X1 X P
Ri(a) = 2 a0 j=1,2,3,4 ,

D(2) = (KK,+ KK,) (p;- Py) (Pg~ Pg) +

(5.69)

(5.70)

+ (K1K3+ K2K4)(P1' P3)(P2' P4) + (K2K3+ K1K4)(P1* p4)(P3‘ 92) ’

“[K2K3(93‘

T2 = ‘“[K1K3(P3'

Tis = ok ¥y oy

T14 = ‘“[lez(Pz‘

2

T21 = _7;122 - gg
a\
- ;g(pz- Py)
- gé(pa— Py)
Ty K

P2) + K2K4(p2‘ P4) + K3K4(p4_ p3)] ’
Pl) A K1K4(p1- P4) + K3K4(p4- P3)] ’
Pl) + K1K4(p1- p4) + K2K4(P4' p2)] ’

pl) + K1K3(p1— p3) +-K2K3(93‘ p2)] ’

vy~ p){[e(1-1)0% 11py- 2(1-0)} -

{le(1-0)a% 11pg- o®(1-1)} -

{Ba-v 1p- Pan)

"ot hE L.~ p{ls(1-0)a®s 11p,- (10} +

K3
+ E-(Pl' P4)

{[n(l—u)a2+ 1]p3- a2(1—u)} +
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K
v Aoy o {a-0a% 17p,- 2o}

2

Nzt K 2
T = ar T s p){[x(1-0)a% 11p,- a2 (1-1)} -
K

- 2o, p{8-v)0% 11py- P10} -

K
= Zé(p2- pl){[n(l—u)a2+ 1]p4- 02(1-V)} ’

2
hee K
37+ 7 ey pp{leme® 1p- ) ¢

T24

K

+ 2o~ p){ K -1)0% 11p,- 2(1-1))

K
¢ 3oy p{I00®s 1py- 2-n)} (5.72)

The following two mixed boundary conditions will produce two singular

integral equations for the determination of the crack opening

di;placements:
N, (0,y) =-f;(0) , yinLl (5.73)
ul(y) = u(0+,x2)/h =0 , youtside of L, (5.74)
Mxx(0+,y) = -f2(y) » yinlk (5.75)
uz(y) = ﬂx(0+,x2)'= 0 , y outside of Ln ) (5f76)
where
Ln = (al,bl), (a2,b2), cee (an,bn) , (6.77)
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each section (ai’bi)’ defining a crack on x=0. Egns. 5.73,75 with

46,51,64 for y in Ln become,

-1 1 j
£,() = 5 xig 2ZR e ) eI g (5.78)

:A_ 1+v lim I+n [ _
200 = "2x w0 e %meJKJRJ '

1 4 m.X 2 4 m.X ia
+=—=— > p.K.R.e?d +2a°> K.R.e! } e % da . (5.79)
1-v 57737373 j=1 03

After making use of the odd/even nature of the infinite integrals,
Egns. 5.78,79 may be written as follows,

m.x

lim 2
<40 ZR e cosa(t-y) da , (5.80)

|
s
[y
~~
«
~

1

|
o =

4 . +00
=\ _ 1+v lim _
2ty = L2 . { -are” E:meJKJRJ

m.X 9 4 m.X
pKRed +a®3KRel ) cosa(ty) de . (5.81)
733 i |

+
¢l
™
w
Mo

R
i
—

Next Egns. 5.69,70,74,76 are substituted into Eqns. 5.80,81 to obtain

. m.X
e J cosa(t-y) da dt +

|
=y
Py
(™
g
|
[
%
Hae
oB
“——\
_
ot
~
o+
-
b—s
v
~~
n
H[\qh
Lq
B>
L Y

(5.82)

f Zki K {—er et &
m, iPj
1,2 2 DX '
¢ 1y @) e } cosa(t-y) da dt . - (5.83)

The infinite integrals must now be analyzed. These integrals may not

exist without the exponential decay in x. In the limit as x gets

180




small, the 1eadiné order term at a approaching infinity provides the
integral that must be interpreted in the finite-part semse or perhaps
in the Cauchy principal value sense,>see Appendix B. Also the large a
behavior must be determined so that the infinite integrals will
numerically converge. The more terms that are kﬁown, the more
accurate/less expensive the numerical integration. This analysis'is
presented in section J.2 of Appendix J. The form of the equations

after using these results is,

_ _1_ ul (t)
-1, = o ¥L 22j§§§ dt +
n
+ pil i JLlnlt-y|u1(t)dt + pl e I Inlt- yluz(t)dt +
n Ly

-1 I 1(t) I { éi: le -} cosa(t-y) da dt +

l’L IIIJ
A 3 4 1,.
1( !—'2 . < s =
- JL u2(t) D(a) 2}* —;% cosa(t-y) da dt +
0 =1 7
1 = 1 =
-1 jL uy(8) I (t,y) dt - 2 jL uy(6) T o(t,y) dt , (5.84)
n n
4 (y) = 2% } g% dt +
1 -V 2 27 L (t-y)2
n

21
- pl ILlnlt—yIul(t)dt p22 1 j Inlt-yluy(t)dt +

n n

A 4 1,.
1 a__ 1j _
ty IL uy (t) IOD(a) ;é; n; K, { ATRIP; +
n
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+

(m?-uaz) } cosa(t-y) da dt +

1-v
A 4 75 :
1 a 2]
= t — K. ¢- .P.
T x JLHUZ( ) JO[D(a) ;é; m; { ErmeJ *
+ I%; (m?—vaz) } + 1+; a] cosa(t-y) da dt +
1 = 1 =
. IL uy (8) Iy (6,y) dt + 2 JL up(®) Tpp(t,y) dt . (5.85)
n n

All quantities not defined in this chapter are given in Appendix J.

5.3 Symmetric Loading, Mode 1, results.

As mentioned at the start of this chapter, the primary motivation
for this analysis is to study the effect of shell curvature on crack
interaction as seen thréugh the SIFs. This problem has been
considered by Erdogan and Ratwani [73], by using the classical shell
theory. As with the single crack solution, the theory used here that
includes transverse shear deformations is better suited for this
problem.

The results presented in Figs. 5.1-4, show the effect of cylinder
radius on the stresses ahead of a single crack (both axial, Figs.
5.1,2, and circumferential, Figs. 5.3,4) of length a/h=1 subjected to
crack surface tension and bending loads. It is observea that although
the primary stresses are not considerably different from those of the
plate solution (R/h*w), the secondary values are now non-zero and
increase with decreasing radius. These effects would be magnified for

larger a/h. The results for axial cracks seem to be more sensitive to
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curvature in tension than for the circumferential crack and the
reverse 1is true for bending.

The out-of-plane displacement w(0+,y), or bulging of a single
crack has been examined in [28], and has been used as an
interpretation for the trends -observed in the crack interaction
problem [73]). In Fig. 5.5 the tension and bending results for an
axially cfacked cylinder fith radius R/h=10 are presented for various
crack lengths. Fig. 5.6 gives the results for a circumferential
crack. In these plots the zero is fixed at y/a=0 in the deformed
state. Again it is observed that the axial crack has more complicated
behavior in tension, while the circumferential orientation shows a
similar trend in bending. For these loadings the w displacement in
the region ahead of the crack tip has more of a tendency to become
negative.

The symmetric double crack SIF solutions are presented in tables
5.1-8. The geometries are again the axially cracked cylinder, a/h=1
in 5.1 (tension) and 5.2 (bending), a/h=2 in 5.3 (tension) ﬁnd 5.4
(bending), and the circumferentially cracked cylinder where these four
cases are repeated in tables 5.5-8. For both geometries the primary
stress intensity factor increases for decreasing radius in tension,
and decreases for decreasing radius in bending. Again the axial crack
is more sensitive to curvature than the circumferential crack in
tension and the circumferential crack is similarly more sensitive to
curvature in bending. The secondary SIFs decrease with increasing
cylinder radius except for the outer crack tip of the circumferential
crack, a/h=2 loaded in tension presented in Fig. 5.7. Also the
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secondary values have fluctuations for increasing separation. This
type of behavior was not observed with the primary SIFs as it was by
Erdogan and Ratwani [73]). It is possible that for larger a/h the
curvature effect is strong enough that there can be regions of
increase of the SIFs as the cracks get farther apart. The shortest
.crack for which'this trend wasbobserved in Ref. [73] was a/h=2.5 for
R/h=5. Because of convergence difficulties and the shallow shell

assumption, longer cracks were not investigated.

5.4 Skew-Symmetric Loading, Modes 2,3

There are currently five unknowns in the problem, A(a), and Rj(a)
for j=1,2,3,4. The first step is to reduce this to three unknowns by
using the symmetry conditions,

N (0,y) =0 , (5.86)

M (0,y) =0 . (5.87)

Then replace the remaining unknowns with the crack surface

displacements,
g3(y) = ug(¥) = w(xy)/h = w(0",x)/h , (5.88)
8, = u,(1)-0g/Myuz(y) = vixg) /b-Og/N) Pxgu(xy) /b2
= v(0",x) /b- (/N 2w (0" x ) /62, (5.89)
uy () = v(xz)' = g4 + 0N g | (5.90)
g5(y) = uz(¥) = p (x)) = ﬁy(0+,x2) , (5.91)

where ui(y) are the crack opening displacements and gi(y) are the
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unknowns to be used. The in-plane displacement component, i=4,
determines this, see Eqns. 5.57,58. If u, were used as an unknown the
resulting matrix would not be diagonally dominant and there may be
numerical problems. The equations that relate gi(y) to the original

unknowns are:

A(a) = —-—— Z(m -va )1( R, (5.92)
iax(1- u) r j=1 ' :

; 4 '
ﬁ’j—%pjxjkj = q5(a) ) (5.93)
4

SR.=0 |, (5.94)
j=1 1 _

4, ,

2wk, =q,(a) , | (5.95)
i=1 :

4 i

R.K.(kp.-1) = , 5.96
2;; iK;(6p5-1) = Zag(a) (5.96)
where
+00 ‘ot
qk(a) = —iaj gk(t)aem dt , k=3,4,5 . (5.97)

The solution to Eqns. 5.93-96 is

j=1,2,3,4

D(a)’ y -J7154,9, ’ (5’98)

where D(a) is the same as Eqn. 5.71 and 7kj are as follows:
Ta1 = 2{KgPy(pypp) + Kypy(ypy) + Kopy(pgpp))

732 = %{K3p3(p4—p1) + K4P4(P1‘P3) + Klpl(p3-p4)} ’
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733 :'_i{szz(p4‘p1) + Kgpy(py-py) + K1P1(p2'P4)} ’
Ta4 = %{K2p2(p3-p1) + Kapa(p-py) + Klpl(pz—p3)} ;
41 = {K3K4(P4'93) + KoKy(pg-py) + KKy (P3Pp))
Tey = ~{KgKe(ypg) + KKy (py-py) + KKy (P3P}
143 - {K4K2(P4'92) + KKg(py-py) + KoKy (Pyp-Pp))
a4 = '{K3K2(P3’P2) + KK3(pypg) + K2K1(P2'P1)} '
Ty = -(1-0) {K, (6p1) (pgpg) Ky (£p5-1) (pyp,) Ky (80y~1) (B-Py)
Tso = (1-V){K4(~p4-1)(p3-p1)+K§(~p3-1)(pl-p4)+K1(~p1-1)(p4-935},
Ts3 = -(l-V){K4(ﬁp4-1)(92-p1)+K2(~92-1)(pl-p4)+K1(npl—1)(p4-p2)},

Tsq = (l-V){K3(~p3-1)(pz—p1)+K2(ﬁpz-1)(pl-p3)+K1(~pl—1)(p3—p2)} :
(5.99)
The following mixed boundary conditions will produce three singular

integral equations for the determination of the crack opening

displacements:
V(©0'y) = -fa(y) , yinLl " (5.100)
83(?) = W(0+,y) =0 , vy outside of Ln , (5.101)
Nxx(o*,y) =-1,(y) , yinL , (5.102)

S4(Y)=V(0+;Y)-(Xg/x)zyw(0+,y) =0 , youtside of L , (5.103)
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Mxy(0+,y) =-f(y) , yinL (5.104)

gs(y) = ,(0",y) =0 , y outside of L . (5.105)

See Eqn. 5.77 for the definition of Ln' Eqns. 5.100,102,104 with
5.48,53,54,92 become:

-4(y) = %; )1;3 {r(l-y)Z(" -va )K R e™* 4

+ I:ZthpJKJRJ (a)e } -iay 4, , (5.106)
‘ i lim i* o-iay
-£,(y) = 57 20 ‘“a1ZI:mJR (a)e da , (5.107)
4 X
-t _ L+ lim (a”+r ) _ _
18500 =9 x+0 . {Z:Jj[lar(l ) "")
: m.X _.a
- Ziamge J ]} e ™ da . (5.108)

After asymptotic analysis, see section J.3 of Appendix J, these three

equations may be expressed as,

- ofodad-pi 3, < 22 4

- (A2 (xz/x)ng‘*]  tnteeyleg(erae -

n

], 5 [5E lierg0am )

n

—(m?—Vaz)
[ r(1-1) + nmjpj] + a} cosa(t-y) da dt +
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A 4 - (n2-vd?)
* %IL g4(t) fo{o‘fa>j§*<j74j[ ju-; + ’““jpj] -
n

[1()\2 XZ) ]}'sina(t-y) da dt +

(m?-uaz)

1 .
* g J 85(t)I D(a) 5 3753 [_T%T:/T + Icmjpj] sina(t-y) da dt +

| i - ]
. JL gy(t) Tpq(t,y) dt + 1 IL g, () T, (t,y) dt «

n n
+ % IL gg(t) Ige(t,y) dt (5.109)
1 g4(t) B 1 &
“1,0) = 5 )(L (b-y)2 [ A J( Ty dt
n n

51 .
- pil I Inlt-ylg, (t)dt - o 1 ILlnlt—ylgs(t)dt R
n n

1 a 4 . 2 3X§+X§ .
.1 [ gs(t)I {g5 jlmj[1a73j-(x2/x) 745]—[ " |}sina(t-y)dadt «
=

n

! IL g4(t) I {D(z)z 74] % } cosa(t-y) da dt +

n

o1 J 5(t)J D(a) Zm 75 cosa(t-y) da dt +

n

1 1 £
. IL g5(t) I 5(t,y) dt + 1 IL g (t) T,,(t,y) dt +
n n

+ 1 [L gs(t) I s(t’}') dt ’ (5110)
n

188




gg(t)
L (t-y)?

1+v
- It;fs(y) T ox % dt

wn
S
§ bt

55 1
1 JLlnlt—y|g4(t)dt -0l lentt-ylgs(t)dt_+

n n

‘3 IL gs(t)Ig{%ging[1"735‘(*2/*)274j]*

n -

[ 02+r2

ar(l_y)(m?‘Vaz)-2ﬂmj]}sina(t—y)dadt +

A 4 2 2
-1 (e a 2 2
- J g4 (%) I-B;EZK574j[E;?%§;7(mj-ua )—2amj] cosa(t-y) da dt +
Ln 0" j=1

A 4 2 2
1 “4 2 2
t oy IL g5(t)Io{ﬁ%57§§;Kj75j[E%?T§;T(mj_ua )—2amj] +
n .
+ a(1+u)} cosa(t-y) da dt +

1 T 1 =
+ ; JL 83(t) 153(tSY) dt + ; IL 84(t) 154(t,Y) dt +
n “n

1 -
- IL g5(t) Igg(t,y) dt (5.111)
n

5.5 Skew-Symmetric Loading, Mode 2 and 3, results.

The results for the interaction of two equal length (a/h=1)
cracks in a cylinder are presented in tables 5.9-11 (axial) and 5.12-
14 (circumferential). The three possible loadings, in-plane shear,
twisting, and out-of-plane shear are included. Thé effect of

curvature is not as strong as for the symmetric problem of Sec. 5.3.
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Also the difference between the axial and the circumferential crack is
minimal, especially for twisting, see tables 5.10,13. Both primary
and secondary values of the SIFs change very little. The only trends
that can be observed with respect to curvature are the mode 3
component of the SIF for in-plane shear loading is greater for the
circumferential crack, see tables 5.9,12, and for out-of-plane shear
there is a notable difference in the in-plane shear component of the

SIF, again greater for the circumferential crack, 5.11,14.
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Table 5.1 Mode 1 normalized stress intensity
factors for symmetric collinear axial cracks in a
cylinder of radius R/h subjected to membrane
loading. The inner and outer crack tips are
located at y/a=+b, *c respectively where a/h=(c-
b)/(2h)=1, 01=Nx/h, v=.3, M*Nx, B*Mx.

‘ MEMBRANE LOADING
b/a 0.05 0.125 0.25 0.5 1

+00

R/h
5 2.074 1.63¢ 1.431 1.318 1.265 1.158
ky(b) 10 1.889 1489 1.2909 1.188 1.139 1.081
- 2 1.825 1.438 1.252 1.138 1.082 1.041
(Y2 50 1.802 1.420 1.234 1.118 1.056 1.016
+0 1,795 1.414 1.229 1.112 1.048 1.000
5 1.392 1.341 1.304 1.274 1.244 1.158
y(©) 10 1.241 1199 1.168 1.144 1.128 1.081
20 1.182 1.143 1.113 1.087 1.069 1.041
6,da 50 1.158 1.119 1.089 1.060 1.039 1.016
+ 1,115 1.112 1.081 1.052 1.028 1.000
5 .248  .169 .124 .093 .084 .103
kg(b) 10 .192  .136 .103 .076 .060  .071
-=— 20 .13 .100 .077 .058 .045 .046
2 50 .081 .060 .047 .037 .028  .025
- .000  .000 .000  .000 .000  .000
5 7106 - .086 . .089 .087 .093 .103
g(c) 10~ .087 076 - .068 .061 .059 .071
= 20 .068 ~ .058 -~ .052 .045  .040  .046
Ja 50 .043  .038 .033  .029 .025 .025
+% .000  .000 .000  .000 .000  .000
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Table 5.2 Mode 1 normalized stress intensity
factors for symmetric collinear axial cracks in a
cylinder of radius R/h subjected to bending. The
inner and outer crack tips are located at y/az*E,
*c respectively where a/h=(c-b)/(2h)=1, 02=6Mx/h R

v=.3, M*N_, B*M_.
. X X

BENDING
b/a 0.05 0.125 0.25 0.5 1 +0
R/h :

5 1.205 1.006 .902 .824 771 .725

ky(b) 10  1.240 1.033 .924 .841 .783 .735

20 1.262 1.051 .939 - .853 .791 .740

02IZ“ 50 1.279 1.064 .950 .862 .798 .745
s 1.204 1.076 .960 .870 .805 .747 -

5 .828 .809 .790 770 .751 .725

ky(c) 10 .847 .825 .804 .781 .761 .735

20 .860 .837 .815 .790 .768 .740

a2I§" 50 .870 .846 .823 .797 .774 .747

+0 .880 .855 .831 .805 .780 .747

5 .089 .069 .060 .055 .049 .033

ky(b) 10 .048 .038 .033 .031 .030 .022

——— 20 .025 .020 .018 .017 .018 .014

o, fa” 50 .011 .008 .008 .007 .008 .007

+0 .000 .000 .000 .000 .000 .000

5 .063 .059 .055 _  ..051 .045 .033

ky(c) 10 .036 .034 .033 :031  .030 .022

20 .020 .019 .018°  .018 .018 .014

021? 50 .009 .008 .008 .008 = .008 .007

+% .000 .000 .000 .000 .000 .000
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Table 5.3 Mode 1 normalized stress intensity
factors for symmetric collinear axial cracks in a
cylinder " of radius R/h subjected to membrane
loading. The inner and outer crack tips are

located at y/a=+b, #c respectively where a/h=(c-

b)/(2b)=2, 0,=N /b, v=.3, W*N_, B+N_.

MEMBRANE LOADING

b/a 0.05 0.125 0.25 0.5 1 +o

R/h | -
5 3.904 2.924 2.464 2.117 1.779 1.480
ky(b) 10 2.442 1.917 1.683 1.553 1.456 1.267
~— 20 2.019 1.593 1.397 1.290 1.245 1.144
f4a 50 1.850 1.459 1.272 1.161 1.109 1.033
+»  1.795 1.414 1.220 1.112 1.048 1.000
5 2.553 2.305 2.109 1.889 1.668 1.480
y(€) 10 1.674 1.596 1.530 1.480 1.401 1.267
—~— 20 1.359 1.311 1.278 1.251 1.227 1.144
fa 50 1.208 1168 1.139 1.114 1.099 1.033
+»  1.115 1.112 1.081 1.052 1.028 1.000
5 371  .206  .140  .140  .175  .166
kg(b) 10 .305  .196  .136  .107 .11  .135
20 .251  .170  .122  .088  .080  .099
o.{a 50 176 .124  .092 ~ .067  .051  .059
@ .000 .000 .000  .000  .000  .000
5 .197 .189  .189  .193  .188  .166
g(c) 10 130 .122  .121  .127  .139  .135
20 .103 .092 .085  .082  .089  .099
o {a 50 .078  .068  .060  .052  .048  .059
.000

00 .000 .000 .000 .000 .000
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- Table 5.4 Mode 1 normalized stress intensity
factors for symmetric collinear axial cracks in a
cylinder of radius R/h subjected to bending. The
inner and outer crack tips are located at y/a=*§,
#c respectively where a/h=(c-b)/(2h)=2, 02=6Mx/h )

v=.3, MsN_, BoM_.
X X

BENDING
b/a 0.05 0.125 0.25 0.5 1 +o
R/h

~ 5  1.111 .922 .812 .735 .690 .648
kg(b) 10  1.167 .966 .846 .757 .708 .668
20 1.211 1.000 .872 .776 .721 .681
aZIE" 50 1.250 1.030 .896 .793 .733 .691
' s 1,201 1.060 .920 .813 .748 .700
5 .745 .726 .709 .690 .673 .648

kg(c) 10 .768 .747 .727 .708 .692 .668
20 .789 .765 .743 .721 .704 .681

02I£" 50 .809 .782 .758 .733 .713 .691
+0 .833 .803 .776 .749 .726 .700

5 .321 .224 173 .128 .086 .059
ky(b) 10 .148 111 .093 .079 .063 .042
20 .079 .060 .052 .047  .042 .029
o2I§“ 50 .035  .027 .024 .022 .022 .016
+ .000 .000 .000 .000 .000 .000
5 .190 .158 .130 .100 .075 .059
ky(c) 10 .098 .088 .079 .068 .055 .042
— 20 .056 .052 .048 .044 .039 .029
azr;" 50 .026 .025 .024 .023 .022 .016
+ .000 .000 .000 .000 .000 .000
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Table 5.5 Mode 1 normalized stress intensity
factors for symmetric collinear circumferential
cracks in a cylinder of radius R/h subjected to
membrane loading. The inner and outer crack tips
are located at y/a=tb, #2c respectively where
a/h=(c-b)/(2h)=1, 01=Nx/h, v=.3, M*Nx, B*Mx. :

MEMBRANE LOADING

b/a 0.05 0.125 0.25 0.5 | o
R/h :

5 1.827 1.440 1.252 1.138 1.079 1.036
M(b) - 10 1.806 1.423 1.237 1.121 1.059 1.018
20 1.768 1.417 1.231 1.115 1.052 1.008
fa~ 50 1.7¢6 1.415 1.229 1.113 1.048 1.003
atd 1.795 1.414 1.229 1.112 1.048 1.000
5 1.182 1.142 1.111 1.083 1.064 1.036
M(c) 10 1.162 1.122 1.081 1.063 1.041 1.018
20 1.154 1.115 1.084 1.055 1.033 1.009
Ja~ 50 1.152 1.113 1.082 1.052 1.028 1.003
*® 1.115 1.112 1.081 1.052 1.028 1.000
5 .200 .143 .110 .081 .062 .076
) 10 .154 113 .088 .068 .051 .0562
20 .107 .079 .063 .050 .038 .033
Ja~ 50 .0568 .044 .035 .028 .022 .018
+0 .000 .000 .000 .000 .000 .000
5 .086 .077 .069 .061 .057 .076
kB(c) 10 .076 .067 .059 .051 .044 .052
— 20 .056 .050 .044 .038 .033 .033
1'2 50 .033 .029 .026 .023 .020 .018
+0 .000 .000 .000 .000 .000 .000
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Table 5.6 Mode 1 normalized stress intensity
factors for symmetric collinear circumferential
cracks in a cylinder of radius R/h subjected to
bending. The inner and outer crack tips are
located at y/a=*b, #c respectively where a/h=(c-

_ ~ 2
b)/(2h)=1, 0,=6M /b, v=.3, N , BsM_ .

v BENDING

b/a 0.05 0.125 0.25 0.5 1 +e0
R/h

5 1.013 .854 773 .713 .676 .675
kp(b) 10 1.125 .942 .847 .775 .725 .707
—=— 20 1.199 1.001 .897 .816 .759 .725
Ja 50 1.253 1.043 .932 .846 .785 .740
+o 1,204 1.076 .960  .870  .805 .747
5 .704 .693 .683 .673 .667 .675
ky(e) 10 .770 .755 .739 . .722 .708 .707
- 20 .817 .798 .778 .757 .738 .725
aZI;" 50 .852 .830 .808 .783 .761 .740
+% .880 .855 .831 .805 .780 .747
5 .042 .033 .030 .029 .030 .024
ky(b) 10 .024 .019 .017 .017 .018 .016
—— 20 .013 .010 .009 .009 .010 .010
a 50 .006 .004 .004 .004 .004 .005
+ .000 .000 .000  .000 .000 .000
5 .032 .031 .030 .030 .030 .024
ky(c) 10 .019 .018 .018 .018 .018 .016
—-— 20 .011 .010 .010  .010 .011 .010
{a~ 50 .005 .004 .004 .004 .005 .005
+ .000 .000 .000  .000 .000 .000
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Table 5.7 Mode 1 normalized stress intensity
factors for symmetric collinear circumferential
cracks in a cylinder of radius R/h subjected to
membrane loading. The inner and outer crack tips
are located at y/a=tb, =#c respectively where
a/h=(c-b)/(2h)=2, 01=Nx/h, v=.3, I*Nx, B*Mx.

MEMBRANE LOADING

b/a 0.05 0.125. 0.25 0.5 1 +0

R/h -
5 1.992 1.569 1.372 1.261 1.211 1.124
b) 10 1.868 1.472 1.283 1.171 1.118 1.066
20 1.821 1.435 1.248 1.134 1.075 1.034
o2 50 1.801 1.419 1.234 1.118 1.055 1.014
+» 1,795 1.414 1.229 1.112 1.048 1.000
5 1.325 1.278 1.244 1.216 1.193 1.124
y(e) 10 1.221 1.180 1.148 1.123 1.106 1.066
—— 20 1.177 1.138 1.107 1.080 1.061 1.034
(42 50 1.157 1.118 1.087 1.058 1.037 1.014
+o 1.115 1.112 1.081 1.052 1.028 1.000
5 .212  .133  .084  .055  .061  .112
kp(b) 10 .236  .163  .117  .081  .065  .099
- 20 .207 .148  .110 .080  .060  .073
J= 50 .140  .102  .078  .059  .045  .043
+2 .000 .000 .000 .000 .000  .000
5 .056  .058  .062  .073  .093  .112
p(e) 10 .082 .075 .070 .087  .072 -.099
20 .087 .077 .068 .060  .056  .073
Ja~ 50 .068 .060 .053 .045  .039  .043
+% .000 .000 .000 .000 .000 .00O
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Table 5.8 Mode 1 normalized stress intensity
factors for symmetric collinear circumferential
cracks in a cylinder of radius R/h subjected to
bending. The inner and outer crack tips are
located at y/a=*b, #c respectively where a/h=(c-

- = 2
b)/(2h)=2, 0,=6M_/h°, v=.3, WoN_, BoM .

BENDING
b/a 0.05 0.125 0.25 0.5 1 +0
R/h

5 .714 .612 .555 .520 .516 .530

ky(b) 10 .884 .746 .665 .607 .583 .593
-4— 20 1.030 .860 .758 .681 .641 .637
{a. 50 1.163 .963 .841 .748 .694 .673
s 1.201 1.060 .920  .813 .748 .747
5 .517 .516 .517 .519 .525 .530

g(e) 10 .599 .592 .587 .583 .584 .593
—=— 20 .677 .664 .651 .639 .632 .637
fa~ 50 .754  .733  .713  .693  .677  .673
+0 .833 .803 .776 .748 .726 .747
5 .091 .072 .063 .059 .053 .038

ky(b) 10 .061 .048 .043 .041 .040 .029
20 .038 .030  .026 .025 .026 .021

o da 50 .018 .014 .012 .012 .013 .012
0 .000 .000 .000  .000 .000 .000
5 .063 .060 .057 .053 .048 .038
ky(c) 10 .045 .043 .041 .040 .038 .029
20 .029 .028 .027 .026 .026 .021
ZIE" 50 .014 .013 .013 .013 .013 .012
»o 000 .000 .000  .000 .000  .000
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Table 5.9 Modes 283 normalized stress intensity
factors {for symmetric collinear axial cracks in a
cylinder of radius R/h subjected to in-plane
shear. The inner and outer crack tips are located
at y/a=tb, 2c respectively where a/h=(c-b)/(2h)=1,
04=N /h, v=.3, I-N__, M+M__ | 0+V_.

Xy Xy Xy X

IN-PLANE SHEAR
b/a 0.05 0.125 0.25 0.5 1 +0
R/h
5 1.912 1.485 1.200 1.159 1.082 1.031
k,y(b) 10  1.860 1.460 1.265 1.141 1.069 1.016
20 1.820 1.439 1.249 1.128 1.061 1.008
oJda 50 1.809 1.425 1.237 1.120 1.054 1.003
+0  1.795 1.414 1.228 1.112 1.048 1.000
5 1.208 1.161 1.123 1.087 1.058 1.031
kyy(c) 10  1.186 1.142 1.107 1.074 1.046 1.016
£ __ 920 1.171 1.128 1.096 1.065 1.039 1.008
041? 50 1.160 1.120 1.088 1.058 1.033 1.003
»o 1,115 1.112 1.081 1.052 1.028 1.000
"5 -.068 -.044 -.030 -.019 -.014 -.020
kop(b) 10  -.049 -.034 -.025 -.018 -.013 -.014
<£l_ 20 -.032 -.023 -.018 -.013 -.010 -.008
a4IaT 50 -.017 -.013 -.010 -.008 -.006 -.005
+0 .000  .000 .000 .000  .000 .000
5 -.006 -.008 -.009 -.012 -.014 -.020
kyp(c) 10  -.008 -.009 -.009 -.009 -.010 -.014
20 -.008 -.008 -.008 -.008 -.007 -.009
041? 50 -.006 -.006 -.005 -.005 -.005 -.005
+0 .000  .000 .000 .000  .000 .000
5 -.008 -.017 -.028 -.038 -.047 -.050
kyg(b) 10  -.002 -.007 -.012 -.018 -.022 -.026
20 -.001 -.003 -.005 -.008 -.011 -.014
041? 50 -.000 -.001 -.002 -.003 -.004 -.006
+0 .000  .000 .000 .000  .000 .000
5 .090  .078 .068 .059 .052 .050
kgg(c) 10 .051 .045 .039 .034  .029 .026
20 .028  .024 .022 .019 .016 .014
041? 50 .012 .011 .009 .008 .007 .006
+% .000  .000 .000 .000  .000 .000
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Table 5.10 Modes 2&3 normalized stress intensity
factors for symmetric collinear axial cracks in a
cylinder of radius R/h subjected to twisting. The
inner and outer crack tips are located at y/azib,

*c respectively where a/h=(c-b)/(2h)=1, 05=6Mxy/h ,
v=.3, IsN__, T+M__, 0+V_.
Xy Xy X
TWISTING |
b/a 0.05 0.125 0.25 0.5 1 +0
R/h

5 .666 .576  .537 .519 .516  .519
kpp(b) 10 .670  .579 .540  .521  .517 .520
= 20  .672  .581 .541 .522 .518 .521
{a~ 50 .674  .582 .542 .523 .519 .521
0 .675  .583  .543  .524 .519 .522
5 .503  .505  .509 .512 .516  .519
kyp(c) 10 .504  .506  .509 .513 .517 .520
£ 20 .504 .507 .510 .514 .517 .521
ja- 50 .505 .507 .510  .514 .518 .521
+o .506  .508  .511 .515 .518 .522
5 -.019 -.013 -.010 -.007 -.006 -.007
kyy(b) 10  -.014 -.010 -.007 -.005 -.004 -.005
20 -.009 -.006 -.005 -.004 -.003 -.003
. 50 -.005 -.004 -.003 -.002 -.002 -.002
+» .000 .000 .000 .000 .000 .000
5 -.006 -.006 -.006 -.006 -.006 -.007
oy(c) 10 -.005 -.005 -.004 -.004 -.004 -.005
<+ _ 20 -.004 -.004 -.003 -.003 -.003 -.003
gfa 50 -.002 -.002 -.002 -.002 -.002 . -.002
+o .000 .000 .000 .000 .000 .000
5 -.004 .007 .025 .047 .062  .069
kyg(b) 10  -.005  .006  .024  .047 .062 - .069
20 -.005 .005 .024  .046 .062  .070
fa- 50 -.0056 .005 .023 .046 .062  .070
s _-.005 .005 .023 .046 .062  .070
5 -.100 -.082 -.085 -.077 -.071 -.069
kyg(c) 10 -.102 -.094 -.08 -.078 -.072 -.069
~— 20 -.103 -.095 -.087 -.079 -.073 -.070
Ja- 50 -.103 -.096 -.088 -.079 -.073 - -.070
+  _.]04 -.096 -.088 -.079 -.073 -.070

O —
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Table 5.11 Modes 2&3 normalized stress intensity
factors for symmetric collinear axial cracks in a
cylinder of radius R/h subjected to out-of-plane
shear. The inner and outer crack tips are located
at y/a=+b, 2c respectively where a/h=(c-b)/(2h)=1,
03=3V /(2h), v=.3, IsN__, T+M__, 0+V_.

x xy Xy X

OUT-OF-PLANE SHEAR

b/a 0.05 0.125 0.25 0.5 1 +0
R/h
5 2.876 2.103 1.797 1.682 1.665 1.661
kgp(b) 10 = 2.897 2,116 1.806 1.689 1.672 1.671
20 2.905 2.121 1.810 1.692 1.675 1.674
a3IZ" 50 2.908 2.123 1.812 1.694 1.676 1.676
s 2,009 2.124 1.812 1.694 1.677 1.676
5 1.748 1.689 1.664 1.658 1.661 1.661
kgp(c) 10 1.757 1.697 1.671 1.665 1.669 1.671
20 1.761 1.701 1.674 1.667 . 1.671 1.674
a3I;“ 50 1.762 1.702 1.675 1.668 1.672 1.676
s 1,763 1.702 1.675 1.669 1.673 1.676
5 .016  .024 .031 .040 .049 .053
kop(b) 10 .008  .011 .014 .019 .024  .028
< _— 20 .004  .005 .007 .008 .011 .014
ogla’ 50 .001  .003 .003 .003  .004  .006
+o .000  .000 .000 .000 .000  .000
5 -.075 ~-.067 -.062 -.057 -.054 -.053
koy(c) 10 -.042 -.038 -.034 -.032 -.028 -.028
<42 920 -.023 -.020 -.019 -.017 -.016 ~-.014
asIa— 50 -.009 -.008 -.008 -.007 -.007 -.006
+00 .000  .000 .000  .000 .000  .000
5 -.074 -.155 -.251 -.358 -.429 -.455
kop(b) 10  -.074 -155 -.251 -.359 -.433 -.462
£ 20 -.074 -.155 -.251 -.360 -.433 -.465
asIZ" 50 -.074 -.155 -.251 -.360 -.433 -.465
4@ -.074 -.155 -.251 -.360 -.433 -.466
5 .568  .518 .489 .471 .462 .455
kop(c) 10 .580  .528 .498 .479 .469 .462
< 20 .585  .532 .502 .482 472  .465
aBIZ" 50 .587  .534°  .503  .484 .473 .465
+o0 .588  .535 .504 .484 .474 .466
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Table 5.12 Modes 2&3 normalized stress intensity
factors for symmetric collinear circumferential
cracks in a cylinder of radius R/h subjected to
in-plane shear. The inner and outer crack tips are
located at y/a=2b, 2c respectively where a/h=(c-
b)/(2h)=1, 04=N /h, v=23, I»N__, T-M__ , 0+V_.

Xy Xy Xy X

IN-PLANE SHEAR

b/a 0.05 0.125 0.25 0.5 1 +
R/h
5 1.979 1.53¢ 1.322 1.182 1.098 1.036
kyy(b) 10  1.880 1.474 1.275 1.149 1.077 1.018
20 1.835 1.443 1.252 1.131 1.064 1.009
Ja 50 1.810 1.425 1.238 1.120 1.055 1.003
+o 1,795 1.414 1.229 1.112 1.048 1.000
5 1.223 1.174 1.135 1.098 1.066 1.036
kyy(c) 10 1.192 1.148 1.113 1.079 1.051 1.018
£ — 20 1.173 1.132 1.099 1.067 1.042 1.009
2 50 1.160 1.120 1.089 1.058 1.034 1.003
o 1.115 1.112 1.081 1.052 1.028 1.000
5 -.142 -.093 -.063 -.040 -.025 -.025
kyp(b) 10 -.089 -.061 -.044 -.031 -.021 -.017
~£__ 920 -.053 -.037 -.028 -.021 -.015 -.011
Ja 50 -.025 -.018 -.014 -.011 -.008 -.006
+% .000 .000 .000 ¢ .000 .000  .000
5 .013 .007 .001 -.004 -.011 -.025
op(c) 10 -.001 -.003 -.005 -.007 -.009 -.017
£ 920 -.0056 -.006 -.007  -.007 -.007 -.011
a 50 -.005 -.005 -.005 -.005 ~-.005 -.006
4o .000 .000 .000 .000 .000 .000
5 -.018 -.041 -.087 -.098 -.125 -.150
kgg(b) 10  -.005 -.015 -.028 -.043 -.057 -.075
=— 20 -.002 -.006 -.013 - -.020 -.027 -.038
oda 50 -.000 -.002 -.005 -.008 ~-.011 -.015
40 .000 .000 .000  .000 .000 .000
5 .296 .260 .230 .199 .173 .150
kyg(c) 10 .156 .138 .122 .107 .093 .075
= 20 .080 .071 .063 .056 .049 .038
cda 50 .033 .029 .026 .023 .020 .015
o .000 .000 .000 .000 .000 .000
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Table 5.13 Modes 2&3 normalized stress intensity
factors for symmetric collinear circumferential
cracks in a cylinder of radius R/h subjected to
twisting. The inner and outer crack tips are
located at y/a=¢b, 2c respectively where a/h=(c-

b)/(2h)=1, 05=6Mxy/h2, v=.3, N, T, 09V,
TWISTING .
b/a 0.05 0.125 0.25 0.5 1 +0
R/h ,

5  .665 .574  .535  .517 .514 .519
kop(b) 10 .670  .578  .539 .520 .516  .520
< 20 .672  .580  .541 .522 .518  .521
o da” 50 .674  .582  .542  .523 .518  .521

+0 .675  .583  .543 .524 .519 .522
- 5 .502 .505  .508  .512 .516  .519
kyp(c) 10 .503  .506  .509 .513 .516 .520
< __ 20 .504 .507 .510  .513 .517 .521
ola” 50 .505  .507  .510  .514 .517  .521

+o0 .506  .508  .511 .515 .518  .522

5 -.035 -.023 -.017 -.011 -.008 -.010
koy(b) 10 -.022 -.015 -.011 -.008 -.006 -.006

20 -.014 -.010 -.007 -.005 -.004 -.004
asl? 50 -.007 -.005 -.004 -.003 -.002 -.002

- .000 .000 .000  .000 .000  .000

5 -.009 -.008 -.008 -.007 -.007 -.010
koy(c) 10 -.007 -.006 -.006 -.005 -.005 -.006
£ 20 -.005 -.004 -.004 -.004 -.004 -.004
asl? 50 -.003 -.002 -.002 -.002 -.002 -.002

+e .000 .000 .000  .000 .000  .000

5 -.003 .009 .028  .050 .065  .069
kyg(b) 10 -.004 .006  .025  .047 .063  .070

20 -.005 .006  .024  .047 .062  .070
asrz: 50 -.005 .005  .023 .046 .062  .070

s -.005 .005  .023  .046 .062  .070 .

5 -.098 -.090 -.083 -.075 -.070 -.069
kgp(c) 10  -.102 -.094 -.086 -.077 -.072 -.070
—~—— 20 -.103 -.095 -.087 -.078 -.073 -.070
oda’ 50 -.103 -.096 -.088 -.079 -.073 -.070

s -.104 -.096 -.088 -.079 -.073 -.070
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Table 5.14 Modes 2&3 normalized stress intensity
factors for symmetric collinear circumferential
cracks in a cylinder of radius R/h subjected to
out-of-plane shear. The inner and outer crack tips
are located at y/a=tb, 2c respectively where
a/h=(c-b)/(2h)=1, o3=3Vx/(2h), v=.3, I*ny, T*Mxy,

0+v_.
x

OUT-OF-PLANE SHEAR

b/a 0.05 0.125 0.25 0.5 1 +
R/h o

5 2.565 1.897 1.632 1.537 1.532 1.547
kyg(b) 10  2.793 2.047 1.751 1.641 1.628 1.635
20 2.873 2.100 1.793 1.678 1.661 1.664
Ja. 50 2.902 2.119 1.809 1.691 1.673 1.674
0 2,909 2.124 1.182 1.694 1.677 1.676
5 1.561 1.526 1.514 1.518 1.532 1.547
kyg(c) 10  1.694 1.643 1.621 1.618 1.626 1.635
=L__ 20 1.742 1.684 1.659 1.653 1.658 1.664
Ja 50 1.759 1.699 1.672 1.666 1.670 1.674
s»  1.763 1.702 1.675 1.669 1.673 1.676
5 .040  .058  .076  .099  .124  .152
,7(b) 10 .021  .030 ' .039  .050  .063 .08l
< 20 .010 .015 .019  .025  .031  .042
50 .004 .006 .008 .010 .012  .017
+% .000 .000 .000 .000  .000 .000
5 -.222 -.201 -.187 -.176 -.164 -.152
kyp(c) 10 -.127 -.114 -.106 -.099 -.093 -.081
£ _ 20 -.067 -.060 -.056 -.052 -.049 -.042
o {a 50 -.027 -.025 -.023 ~-.022 -.020 -.017
+% .000 .000 .000 .000  .000  .000
5 -.067 -.141 -.230 -.331 -.400 -.422
kgp(b) 10  -.071 -.151 -.244 -.350 -.423 -.452
20 -.073 -.154 -.249 -.357 -.430 -.462
la~ 50 -.074 -.155 -.251 ~-.359 -.433 -.465
s -.074 -.155 -.251 -.360 -.433 -.466
5 .500  .460  .437  .424  .418  .422
kyp(c) 10 557  .509  .480  .463  .454  .452
£ — 20 578  .526  .496  .477  .467  .462
o,da 50 .586  .533 502  .483  .472  .465
+% .588  .535  .504  .484  .474  .466
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(68/M) Mo/ N
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1. 7.6 2.
v/a

Figure 5.1 Stresses ahead of an axial crack

(a/b=1)  in a cylinder subjected to membrane
loading, v=.3.
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Ry/h=5
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y/a

v/a

Figure 5.2 Stresses ahead of an axial crack
(a/h=1) in a cylinder subjected to bending. The
dashed line corresponds to R/h+w, v=.3.

206




tinder
C’gromfermtial Crack

a./ha-i

[- -]
Np

(6/R)Ny/.

Figure 5.3 Stresses ahead of a circumferential

crack (a/h=1) in a cylinder subjected to membrane
loading, v=.3.
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Cgrcuqferential Crack
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3 o5 Ry/h=5
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5. ' 7.5

y/a

Figure 5.4 Stresses ahead of a circumferential
crack (a/h=1) in a cylinder subjected to bending,
v=.3.
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Figure 5.5 OQOut-of-plane displacement w(0+,y) as
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cylinder - with an axial crack subjected to either
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CHAPTER 6

Part-Through Cracks in Shells

The singular integral equations for part-through crack problems
are obtained directly from>the_corresponding through érack equations
given iﬁ Chapter 5. The compliance relations of Chapter 2 and
Appendix C are used even though they corresbond to the strip solution
~ which does not take into account shellbcurvature. The plane strain
problem for an edge crackéd cylindef'[74], and the axisymmetric case
of a circumferentially cfacked cylihder.[75], could be usea to obtain
these coefficients, but there are convergence problems for shell-like
geoﬁetries, and also a different set of constants would be required
for each curvature. Since the aséumption of shallowness has already
been applied, neglect of this curvature effect should not be too
significant, see [60]. The line-spring model solutions are normalized
with respect to the edge crack solution as explained in section C.4 of
Appéndix C. Perhaps if the solution is considered to be normalized
with respect to the actual "long crack" shell solution instead of the
plane strain strip value, the accuracy.of the result will improve.
This idea is similar to what happens when a compliance curve that is
not too accurate is used. The resulting ratio is more accurate than
the actual value of the SIF.

There are some basic differences between plate and shell problems
besides the mathematical complication that shell curvature introduces.

In a plate, loading at "infinity" for any of the five loads of temsion
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(Nxx), bending (Mxx), out~of—§1ane shear (Vx)’ in-plane shear (ny),
and twisting (Mxy); results in an T"uncracked" solution that is
constant  throughout the plate. Therefore, in the perturbation
problem, the solution to the various loading cases is obtained by
simply applying the negative of these loads to the crack surfaces.
vThe process . of determihing the perturbﬁtion loads in shells for a
given external. loading is not as easj; In a cylinder, for examplg,
any loading at infinity can reSﬁlt only in membrane or in-plane shear
at the éragk region, (excluéing minor secondary contributions). The
loading ‘cases of bending, out-of-plane shear and twisting become
important when an external force is applied near the crack region. To
make use of ‘the various shell solutiéns, the solution to the shell
without a crack must first be obtained. This will in general require
numerical techniques.

With the present formulation the surface crack can lie along any
principal line of constant curvature of a shell. This uncouples the
sy@netric mode 1 loading, from the skew-symmetric loading that couples
modes 2 and 3. If the crack were positioned at an arbitrary angle,
then all three fracture modes interact, see [30]. The most practical
problem represented here would be a mode 1 contribution resulting from
torsion of a cylinder.

The different geometries that are considered include the sphere,
cylinder and circular pipe elbow, which is represented by a toroidal
shell. Also the crack may lie on the outside or inside of the shell

by imposing positive or negative curvature, respectively. The
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emphasis in the results will be the effect of curvature on the SIF at

the maximum penetration point of a semi-elliptical surface crack.

6.1 Mode 1. _
From Eqns. 5.84,85, 2.31, and from the superposition of Fig. C.1,

the integral equations for the symmetrically loaded part-through crack

are found to be:

b u,(t)
1. 1Y/
dt + —:E: u, (t)K () dt
21 j( (t—y)2 J i1
- 7111!1 (y) - 712‘12(Y) = 'nx = ':1 ’ (6.1)
b t
—“—"l)( up(*) S dt —Zj u ()K 5 (8) db
afor a (t- y) a
- 1398, () - Tpeup(y) = Bl = G,/8 (6.2)

where the kernels may be obtained from Eqns. 5.84,85 and Appendix J.
The LSM for inner surface cracks in a pressurized cylinder is compared
to solutions from Raju and Newman [34] in Fig. 6.1, and to solutions
from 0’Donoghue et. al. [40] in Fig. 6.2. The only case where
agreement is poor is for the semi-circular crack with a/h=L0/h=.2,
which is a rather severe geometry for the model. Outward bulging of
the shell surface along the line of the crack is presented in Fig. 6.3
for an outer circumferential crack in a cylinder. Fig. 6.4 shows the
inner crack case where the bulging‘is inward. The tension case of 6.4
shows that the depression does not always increase as the crack gets

deeper (i.e. increasing Lo/h) because of the tendency of the crack to
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bulge outward when there is no net ligament. The net ligament causes
a bending component that {orces the surface inward and these two
effects oppose each other. Therefore it would be difficult to predict
crack depth by a measurement from the back surface.

To date, as far as I know, the LSM has only been applieﬂ to
cracked cylinders, see for example [49,60]. In tables 6.1-5 the
solution to the spherical shell is presented for both inner and outer
cracks of varying depths and lengths. It is noted that the results
are sensitive to curvature. Also for a given geometry the SIFs are
higher for the external crack than for the internal crack. In table
6.6 the SIF distribution along the contour of a semi-elliptical crack
located at different positions in a toroidal shell is presented. The
four locationé, denoted A through D, are shown in Fig. 6.5. Also the
crack may be internal or external, making a total of eight cases that
are given in this table, and in the tables that follow. It is noted
that the functional behavior of the SIF does not vary much from
position to position. This supports giving only the value of the SIF
at the center of the crack. Therefore, the plate results may be used
to get an idea about this distribution given the crack size and
maximum penetration value. These results are given in Chapter 4 for a
wide range of crack lengths and depths. The toroidal shell results
for mode 1 loading are presented in tables 6.7-22. In these tables
the cylinder radius to shell thickness ‘ratio is held constant at
R/b=10. The main parameter study is the elbow curvature given by

Ri/R’ see Fig. 6.5. Values of crack length to shell thickness (a/h),
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of .5, 1., 2., 4., are used. As expected, the longer the crack, the
more the influence of elbow curvature. The results given in the
tables are for constant crack surface membrane and bending loads. It
should be noted that in order to obtain the solution to the practical
case of an internally' pressurized toroidal shell, or to any other
external loading, the uncracked shell solution must first be obtained.
In general this solution will not be constant over the length of the
crack. This is not a concern with either the sphere or cylinder
because the uncracked solution is constant due to symmetry. However,
it 1is most likely the case that the variation is not considerable and
that the results in the tables may be directly applied once the actual

crack surface loading is determined.

6.2 Modes 2 and 3

From Eqns. 5.109-111, 2.31, and from the superposition of Fig.
C.1, the integral equations for the skew-symmetrically loaded part-

through crack may be expressed as:

L 25 olffolad- 1) L f 22

1 5 /b _ ¥ w 6
RE- EJa g; (VK 5(2) 4t - 755u,(n) = ¥ = -8(1+0) /55, , (6.3)

b g,(t)
1 4N
Py dt + = (t)K. ,(z) dt
§a (t-y) EE%Ia % 4
- 744“4(Y) - 745“5(Y) = "ﬁxy = —34 , (6.4)
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(1 -V ) §b Ss(t) [3X +X1] f g3(t)

X 27 (t—y)

1 3 ﬂ o
;gjg(wxgwdt Togug®) - Tggus) = A = Fe/8
v (6.5)

where,

g3(y) = w(0',y) = us(y) , (6.6)
g, ()=v(0",1)-02/N) 3 (0",y) = u,(N-0Z/M) 2u,(y) | (6.7)
u, () = gg(n) + M2 Pe ) (6.8)
%m=@Wm=%mi (6.9)

The Fredholm kernels may be obtained from Chapter 5 and Appendix J.

Because of tﬁe assumption made in Eqn. 2.12 (see Eqn. 6.10)
concerning self-similar crack growth under mode 2 loading, solutions
to these equations apply only to cases where crack growth is coplanar.
There are no solutions to compare with as in the mode 1 problem. If
the results can be verified, then the mixed-mode solution involving
all three modes should give good results. However the solution is not
expected to be as accurate as for mode 1, since it was observed in
Chapter 4 that there is very little difference in the value of the
secondary SIF = between the rectangular and the semi-elliptical
profiles. In the latter case the secondary value should become of
primary importance as the ends are approached because of changing
crack front curvature. Physically the problem with the model is that
everything is calculated in a plane perpendicular to the plate
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surfaces, while the SIF is defined in a plane normal to the crack
front. Considering this it is remarkable that the comparisons with
the finite elemeht sqlutions are so close for mode 1, see Figs. 4.1-4,
6.1,2. Perhaps the mechanism of the model is such that the energy

release rate, the expression for which is repeated below,

2
12 (.2 2 1 .2
Fov =c=LL (. k2. L2}, | (6.10)

is more accurate than the individual values of the SIFs. If this is
true, then it may explain why the secondary value of the line-spring
SIF does not behave as expected, i.e. the above combination of K2 and -
K3 is more accurate. In the mode 1 case, it doesn’t matter because
there 1is only one non-zero value. Since the secondary value is zero
in the center of the crack due to symmetry, the primary SIF may not be
too affected by the rest of the curve. This of course is the most
dependable value calculated by the LSM.

The results in tables 6.23-34 are for axial and circumferential
semi-elliptical cracks in a cylinder of varying.radius. Crack lengths
and depths are also varied. The value at the center of the crack is
reported. In the case of twisting, as can be seen from the plate
results of Chapter 4, the maximum is typically at the ends. This is
because of the strip results from Appendix C, table C.1 (05), where
the SIF decreases as the crack goes deeper into the plate. As with
the mode 1 results, the plate solutions may be used to get an idea of
the character of the distribution. The results for out-of-plane shear
are nearly insensitive to radius, except for long and deep cracks.

The in-plane shear, the most important loading case, behaves in a more
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reasonable way. More results for the toroidal shell are presented in
tables 6.35-46 for a/h=1,2, and R/h=10. As with the mode 1 tables,

the elbow curvature is the parameter that is of most interest. Agaih
these reéults are not very sensitive to curvature. This should be

expected from the results of the cylinder.
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Table

6.1 Mode

1

normalized

stress intensity
factors at the center of a semi-elliptical surface
crack in a spherical shell, a/h=.5, v=.3.

MEMBRANE LOADING
External crack

Lo/h .2 .4 .6 .8 .95
R/h

5 .735 .400 -.182 .0525 .00566
K,(0) 10 .783  .396  .179  .0512 .00554
X 20 .731 .394 177 .0506 .00549
1m 50 .730 392 175 .0502 .00547
+0 .729 .390 .174» .0499 .00547

Internal crack
5 .718 .380 .172 .0514 .00594
Kl(O) 10 .723 .384 .173 .0506 .00571
£ 20 .725 .386 .173 .0502 .00559
Im 50 .727 .388 .174 .0500 .00552
+o0 .792 .390 .174 .0499  .00547

BENDING
External crack
Lo/h .2 .4 .6 .8 .95
R/h

5 .716 .318 .0630 .0244 .00910
KI(O) 10 .713 .313 .0586 .0262 .00935
K 20 712 .310 .0562 .0271 .00047
1b 50 .710 .308 .0546 -.0276 -.00955
+o0 .709 .306 .0532 -.0281 .00860

Internal crack
5 .698 .294 .0501 -.0270 -.00925
K,(0) 10 .702  .208 0508 -.0277 -.00943
K 20 .705 .301 .0516 .0280 .00951
1b 50 .707 .303 .0524 -.0281 .00957
+00 .709 .306 .0532 -.0281 .00960
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Table

crack in a spherical shell, a/h=1, v=.3.

6.2 Mode

1

normalized

stress intensity
factors at the center of a semi-elliptical surface

MEMBRANE LOADING
External crack

Lo/h .2 .4 .6 .8 .95
R/h
5 .824 .527 .267 .0834 .00967
Kl(O) 10 .822 .520 .258 .0784 .00885
K 20 .821 .515 .252 .0756 .00862
Mm 50 .819 .b11 .248 .0739 .00844
+00 .817 .507 .244 .0725 .00833
Internal crack
5 .798 .481 .236 .0762 .00999
KI(O) 10 .805 .490 .237 .0739 .00921
% 20 .810 .496 .239 .0729 .00879
1m 50 - .814 .501  .242 .0725 .00852
+ .817 .507 .244 .0725 .00833
BENDING
External crack
Lo/h .2 4 .6 .8 .95
R/h
5 .812 .464 .160 .0022 .0086
Kl(O) 10 .810 .456 .150 .0039 .0096
K 20 .808 .450 .143 .0073 .0101
1b 50 .807 .447 .138 .0096 .0104
+00 .804 .441 .133 .0114 .0106
Internal crack
5 .782 .409 .121 .0087 .0093
Kl(O) 10 .791 .419 .123 .0107 .0100
K 20 .796 .427 .126 .0114 .0103
1b 50 .801 .434 .129 .0116 .0105
+00 .804 .441 .133 .0114 .0106
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Table 6.3 Mode 1 normalized stress intensity
factors at the center of a semi-elliptical surface
crack in a spherical shell, a/h=2, v=.3.

MEMBRANE LOADING
External crack
Lo/h .2 .4 .6 .8 .95

5 .882 .643  .375  .136  .0180

K (0) 10 .88  .644  .366  .124  .0152
20 .886 .641  .356  .116  .0136

Im 50 .885  .635  .347  .109  .0126
+o 883  .627  .336 .104  .0120

=

Internal crack

5 .851 .572  .310  .111  .0160
K (0) 10 .862 .589  .315 .106  .0147
¥ 20 .870- .602 .320 .104  .0134

1m 50 .876 .613 .326 .103. .0126
o .883 .627 .336  .104 .0120

BENDING 7
External crack
Lo/h .2 4 .6 .8 .85

R/h

5 .873 .595 .284 .0545 -.0034

Kl(O) 10 .878 .598 .275 .0421 -.0065
¥ 20 .879 .5985 .264 .0326 -.0084
1b 50 .878 .589 .253 .0251 -.0097
ad .875 .578 .239 .0180 -.0107

Internal crack

5 .839 .513 .204 .0231 -.0064
10 .852 .533 .212 .0188 -.0083
K 20 .861 .549 .219 .0170 -.0094
1b 50 .868 .563 .227 .0166 -.0102

0 .875 .578 .239 .0180 -.0107

=
~
=)
N/
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Table 6.4 Mode 1 normalized stress intensity
factors at the center of a semi-elliptical surface
crack in a spherical shell, a/h=4, v=.3.

MEMBRANE LOADING
External crack
Lo/h .2 4 .6 .8 .95

R/h

5 .907 .708 .458 . .193  .0316

Kl(O) 10 .922 .739 .480 .191 .0273
20 .929 .751 .484 .182 .0232
1m 50 .932 .753 .475 .168 .0196
00 .930 .741 .450 .149 .0165

=

Internal crack

5 .884  .645  .384  .154  .0274
K,(0) 10 .90  .674  .400 ~ .151  .0237
20 .911  .695  .413  .147  .0208

Im 50  .920 .715 .426 . .146  .0184
+ .930 .741  .450  .149  .0165

BENDING
External crack
Ly/b .2 4 .6 .8 .95

R/h

5 .809  .665  .372  .109 -.00620
K,(0) 10  .916  .704  .404  .119 -.00281

F— 20 925 720  .412  .104 -.00130

™Mb 50 .928  .723  .403  .0888 -.00533

- 0 . _ sw_ 926 .710 .374  .0663 -.00018

Internal crack

5 .875 .585 .287 .0646 -.00005

KI(O) 10 .892 .629 .309 .0634 -.00274
K 20 .904 .655 .326 .0614 -.00528
1b 50 .914 .678 .343 .0608 -~.00747
0 .926 .710 .374 .0663 -.00918
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Table

6.5 Mode 1 normalized stress intensity
factors at the center of a semi-elliptical surface
crack in a spherical shell, a/h=10, v=.3.

Ly/h

MEMBRANE LOADING .
External crack

.2 .4 .6 . .8 .95
R/h
5 - - - - -
K,(0) 10 .932 .771  .537  .243  .0429
g 20 .950 .820 .508 .272 .0429
1m 50 .963 .856 .642 .288 .0391
+00 .968 .862 .624 .245 .0255
Internal craék
Kl(O) 10 .923 .741 .487 .207 .0373
K 20 .839 779 .526 .219 .0355
1m 50 .952 .813 .562 .227 .0318
+0 .968 .862 .624 .245 .0255
BENDING
External crack
Ly/b -2 .4 6 .8 .95
R/h
5 - - - - -
Kl(O) 10 .926 .735 .455 .154 .0122
K. 20 .945 .793 .533 .194 .0144
1b 50 .960 .838 .592 .219 .0120
+00 .966 .846 .576 .173 -.00266
Internal crack
5 - - - -— -
KI(O) 10 .917 .702 .403 .119 .00664
o 20 .934 .748 .453 .136 .00605
1b 50 .948 .788 .499 .149 .00319
+00 .966 .846 .576 .173  -.00266
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Table 6.6 Distribution of the mode 1 normalized
stress intensity factor along a semi-elliptical
surface crack in a toroidal shell located at
different positions, see Fig. 6.5, a/h=1, R/h=10,
Ri/R=3’ Lo/h=.4, v=.3.

MEMBRANE LOADING

Internal External
Position+ A B C D A B C D
y/a
0. 493 .497 .499 .501 .512 .521 .505 .517
.1 .492 .496 .498 .500 .511 .519 .504 .516
.2 .489 .493 .495 .497 .507 .516 .501 .513
.3 .484 489 .490 .492 .502 .511 .496 .508
.4 .477 .482 .483 .485 .495 .503 .489 .500
.5 .468 .472 .473 .476 .484 .493 .479 .490
.6 .455 .460 .461 .463 471 .479 < .466 .477
7 L4390 .444 .445 .447 .454 .462 .450 .460
.8 418 .423 .423 .426 .432 .439 .428 .437
.9 .380 .394 .393 .397 .401 .408 .398 .406
.85 .367 .373 .371 .375 .379 .385 .376 .384
.98 .348 .353 .352 .355 .358 .364 .355 .363
BENDING
Internal External
Position+ A - B C D A B C D
y/a
0. .423 .429 .431 .433 .446 .457 .439 .453
.1 .424 430 .432 .434 .447 .458 .439 .454
.2 .427 .433 .435 .437 .449 .460 .442 .456
.3 .432 .437 .439 .442 .454 .464 .447 .461
.4 .438 .444 .446 .448 .459 .470 .453 .466
) .446 .452 .453 .456 .467 .477 .460 .473
.6 .456 .461 .462 .466 .475 .485 .469 .482
i .466 .472 .472 .476 .484 .493 .478 .490
.8 .476 .482 .482 .486. .493 .502 .488 .499
.9 .484 .491 .490 .494 .499 .507 .495 .5056
.95 .485 .492 .490 .495 .499 .507 .495 .505
.98 .481 .488 .486 .491 .494 .502 .491 .500
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Table 6.7 Mode 1 normalized stress intensity
factors at the center of a semi-elliptical surface
crack in a toroidal shell. The crack is located at
position A of Fig. 6.5, a/h=.5, R/h=10, v=.3.

MEMBRANE LOADING
: External crack :
Lo/h 2 .4 .6 .8 .95

1 - .731 .393 177 .0506 .00550
K 3 .730 .393 .176 .0605 .00549

5

00

.730 .392 .176 .0505 .00549
.729 .391 .175 .0503  .00549

Internal crack .

S | .724 .385 .173 .0602 .00561
ol 3 724 .385 173 .0502 .00559
5 L7256 . .386 .173 .0501  .00559

w .725 .386 .173 .0501  .00556

BENDING
External crack
Lo/h .2 .4 .0 .8 .85
Ri/R

Kl(O) 1 711 .309 .0561 -.0270 -.00943
K 3 711 .308 .0556 -.0271 -.00945
1b 5 .710 .308 .0554 -.0272 -.00945
+0 .710 .307 .0548 -.0274 -.00947

Internal crack
Kl(O) 1 .704 .299 .0510 -.0280 -.00948
K 3 .704 .300 .0511 -.0280 -.00949
1b 5 .704 .300 .0512 -.0280 -.00950
+00 .705 .301 .0514 -.0280 -.00950
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Table 6.8 Mode 1 normalized stress intensity
factors at the center of a semi-elliptical surface
crack in a toroidal shell. The crack is located at
position B of Fig. 6.5, a/h=.5, R/h=10, v=.3.

MEMBRANE LOADING

External crack

Lo/h .2 .4 .6 .8 . .95
Ri/R
Kl(O) 1 .733 .396 .178 .0509 .00551
K 3 .733 .396 .178 .0509  .00551
Im 5 .733 .396 . .178 .0509 .00551
40 .732 - .395 .178 .0508 .00550
Internal crack

K, (0) 725  .386  .173  .0504 .00565

1
3 .725 .386 .173 .0504 .00564
im 5 .725  .387 .173 .0504 .00564
s0 726 .387 .174 .0504 .00562

BENDING
External crack
Lo/h .2 .4 .6 .8 .95
Ri/R

Kl(O) 1 .713 .312 .0578 -.0266 -.00943
K 3 .713 .312 .0576 -.0267 -.00945
1b 5 .713 .312 .0576 -.0267 -.00945
+o0 .713 .312 .0574 -.0268 -.00947

Internal crack
KI(O) 1 .705 .300 .0516 -.0278 -.00949
K 3 .705 .301 .0518 -.0278 -.00950
1b 5 .705 .301 .0519 -.0278 -.00951
+00 .706 .302 .0521 -.0279 -.00952
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Table 6.9 Mode 1 normalized stress intensity
factors at the center of a semi-elliptical surface
crack in a toroidal shell. The crack is located at
position C of Fig. 6.5, a/h=.5, R/h=10, v=.3.

MEMBRANE LOADING
External crack

Ly/b .2 4 .6 .8 .95
Ri/R
K, (0) 1 .727 .388  .174  .0505 .00560
K 3 .728 .30 .175 .0503 .00551
Im 5 .729 .391 .175 .0503 .00550
+o 729 .391 .175 - .0503 .00549
Internal crack |
KI(O) 1 .729 .392 .176 .0506 .00555
K 3 .726 .388 .174 .0502 .00554
im 5 .726 .387 .173 .0501 .00555
+00 .725 .386 .173 .0501_ .00556
BENDING
External crack
Lo/h .2 .4 .6 .8 .95
Ri/Rv
Kl(O) 1 707 .303 .0632 .0275 .00946
K. 3 .708 .305 .0539 .0275 .00948
1b 5 .709 .306 .0542 -.0275 -.00948
- . e .710 .307 .0548 .0274 .00947
' Internal crack

K,(00 1 .710 .307  .0551 -.0271 -.00944
K 3 707 .303 .0525 -.0278 -.00950
1b 5 .706 .302 .0520 .0279 .00950
+% .705 .301 .0514 .0280 .009850
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Table 6.10 Mode 1 normalized stress intensity
factors at the center of a semi-elliptical surface
crack in a toroidal shell. The crack is located at
position D of Fig. 6.5, a/h=.5, R/h=10, v=.3.

MEMBRANE LOADING
External crack

Ly/h .2 4 .6 .8 .95
Ri/R
K,(0) 1 .729 .32  .176  .0506 .00555
K 3 .732 .394 177 ..0507 .00551
1m 5 .732 .395 177 .0507 .00551
+00 .732 .395 .178 .0508 .00550
Internal crack
Kl(O) 1 727 .388 .174 .0505  .00560
K 3 .726 .388 .174 .0504 .00561
Im 5 .726 .388 .174  .0504  .00561
+0 .726 .387 .174 .0504 .00562
BENDING
External crack
Ly/h -2 4 .6 .8 .95
Ri/R
Kl(O) .710 .307 .0551 -.0271 -.00944

.713 .311 .0570 -.0269 -.00948
. .713 .312 .0574 -.0268 -.00947

=

1

K 3 .712 311 .0567 -.0270 -.00948
5
00

- f,Internal crack

Kl(O) 1 .707 ~ .303 .0532 -.0275 -.00946
K 3 .706 .303 .0525 -.0278 -.00952
1b 5 .706 .302 .0523 -.0278 -.00952
Aol .706 .302 .0521 -.0279 -.00952
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Table 6.11 Mode 1 normalized stress intensity
factors at the center of a semi-elliptical surface
crack in a toroidal shell. The crack is located at
position A of Fig. 6.5, a/h=1, R/h=10, v=.3.

MEMBRANE LOADING
External crack

Ly/h .2 4 6 .8 .95
Ri/R
KI(O) 1 .819 .513 .252 .0757 .00866
K 3 .819 .512 .250 .0752 .00861
im 5 .818 .511 .250 .0749 .00859
+0 .817 .509 .248 .0743 .00854
Internal crack
K,(0) 1  .807  .492  .237  .0727  .00885
K 3 .808 .493 .237 .0725 .00878
1m 5 .808 .493 .238 .0724 .00875
»00 .810 .494 .238 .0723 .00867
BENDING
External crack
Ly/h .2 4 .6 .8 .95
Ri/R
Kl(O) 1 .807 .448 .142 .0071 .0100
K 3 .806 .446 .140 .0078 .0100
1b 5 .805 .445 .139 .0081 .0101
0 .804 .443 .137 .0089 .0102
Internal crack
k,(0) 1 793 .422  .123 -.0117 -.0102
K 3 .794 .423 .124 .0119 .0103
1b 5 .794 .424 .124 .0119 .0103
0 .795 .425 124 .0120 .0103
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Table 6.12 Mode

normalized stress intensity

factors at the center of a semi-elliptical surface
crack in a toroidal shell. The crack is located at
position B of Fig. 6.5, a/h=1, R/h=10, v=.3.

MEMBRANE LOADING
External crack

Lo/h .2 .4 .6 .8 .95
Ri/R
Kl(O) 1 - .823 .520 .257  .0773  .00879
T 3 .824 .521 .257 0771 .00875
Im 5 .884 .520 .256 .0770 .00874
+» .824 .520 .256 .0768  .00871
Internal crack
Kl(O) 1 .809 .496 .240 .0738 .00901
X 3 .810 .497 .241 .0738' .00897
im 5 .811 .498 .241 .0738 .00895
+00 .812 .499 .242 .0738 .00890
BENDING
External crack
Lo/h .2 .4 .6 .8 .95
Ri/R
KI(O) 1 .811 .457 .148 .0052 .0099
K 3 .811 = .457 .148 .0055 .0099
1b 5 .811 .457 .148 .0056 .0100
+00 .811 .457 .147 .0060 .0100
Internal crack
K((0) 1 .796  .427  .127 -.0107 -.0102
K 3 .797 .429 .128 .0107 .0102
1b 5 797 .429 .128 .0107 .0102
+00 .798 .431 .129 .0106 .0103

230




Table 6.13 Mode 1 normalized stress intensity
factors at the center of a semi-elliptical surface
crack in a toroidal shell. The crack is located at
position C of Fig. 6.5, a/h=1, R/h=10, v=.3.

MEMBRANE LOADING
External crack

Ly/b .2 4 .6 .8 .95
Ri/R |
Kl(O) 1 .813 - .502 .244 .0744  .00888
X 3 .815 .505 . 245 .0739 .00859
1m 5 .816 .506 .246 .0739 .00855
+0 .817 .509 .248 .0743 .00854
Internal crack
KI(O) 1 - .817 .509 .249 .0753 .00880
K 3 . .812 .499 .241 .0730 .00865
1m 5 .811 .497 .240 .0726 .00864
+00 .810 .494 .238 .0723 .00867
BENDING
External crack
Lo/h .2 .4 .6 .8 .95
Ri/R
K (0) 1 799  .43¢  .132 -.0094 -.0101
K 3 .802 .439 .134 .0096 .0102
1b 5 .803 .440 .135 .0094 -.0102
+00 .804 .443 .137 .0089 .0102
Internal crack
Kl(O) 1 .804 .442 .138 .0080 -.0100
K 3 .798 .431 .128 .0109 .0103
1b 5 797 .429 .127 .0115 .0103
+00 .795 .425 .124 .0120 .0103
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Table 6.14

Mode 1 normalized stress intensity

factors at the center of a semi-elliptical surface
crack in a toroidal shell. The crack is located at
position D of Fig. 6.5, a/h=1, R/h=10, v=.3.

MEMBRANE LOADING
External crack

Lo/h .2 .4 .6 .8 .95 -
Ri/R_
KI(O) 1 .817 .509 .249 .0753 .00880
o 3 .822 .517 .254 .0762 .00871
1m 5 .823 .519 .255 .0764  .00870
+0 .824 .520 - .256 .0768 .00871
Internal crack 7
Kl(O) 1 .813 .502 .244 .0744  .00888
K 3 .813 .501 .243 .0739 .00886
im 5 .813 .501 .242 -.0739 .00887
+00 .812 - .499 .242 .0738 .00890
BENDING
External crack
Lo/h .2 .4 .6 .8 .95
Ri/R
KI(O) 1 .804 .442 .138 .0080 -.0100
K 3 .810 .453 .145 .0067 .0101
1b 5 .811 .455 .146 .0064 .0101
+00 .811 .457 .147 .0060 -.0100
Internal crack
KI(O) 1 .799 .434 .132 .0084 -.0101
K 3 .799 .433 .131 .0103 .0103
1b 5 .799 .433 .130 .0104 -.0103
+%0 .798 .431 .128 .0106 .0103
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Table 6.15 Mode 1 normalized stress intensity
factors at the center of a semi-elliptical surface
crack in a toroidal shell. The crack is located at
position A of Fig. 6.5, a/h=2, R/h=10, v=.3.

MEMBRANE LOADING
External crack

.95

Ly/b -2 4 .6 .8
K,0) 1 .883 .633 .351  .115  .0138
K 3 .882 .630 .348 .113 .0135
Im 5 .881 .629 .346 .112 .0133
' +00 .880 .625 .341 .109 .0130
Internal crack
Kl(O) 1 .864 .591 .313 .1024 .0136
X 3 .865 .592 .312 .1017 .0133
1m 5 .865 .592 .313 .1014 .0132
>0 .867 .594 .313 .1008 .0129
BENDING
External crack
L/h .2 .4 .8 .8 .95
0/
R;/R
KI(O) 1 .874 .586 .258 .0318 .00803
K 3 .873 .582 .253 .0293 .00838
1b 5 .873 .581 .251 .0282 .00853
+00 .871 .576 .245 .0251 .00893
Internal crack
KI(O) 1 .854 .535 .209 .0151 .00920
K 3 .855 .537 .209 .0144 .00939
1b 5 .8565 .537 .208 .0141 .00948
+00 .8567 .539 .210 .0136 .00968
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Table 6.16 Mode 1 normalized stress intensity
factors at the center of a semi-elliptical surface
crack in a toroidal shell. The crack is located at
position B of Fig. 6.5, a/h=2, R/h=10, v=.3.

MEMBRANE LOADING

External crack

Lo/h .2 .4 .6 .8 .95
K,0) 1 .890  .650  .368  .122  .0l45
K 3 .801 .652 .369 .122 .0143
“1m 5 .891 .652 .369 . 121 .0142
»00 .892 .653 .369 .121 .0141
Internal crack
Kl(O) 1 .870 .604 .324 .107 .0142
K 3 .872 .607 .326  .107 .0141
im 5 .873 .609 .327 .107 .0140
+00 .875 .613 .330 .108 .0139
BENDING
External crack
Ly/h -2 4 .6 .8 .95
Ri/R '
KI(O) 1 .882 .606 .279 .0400 -.00745
K 3 .883 .608 .279 .0394 -.00767
1ib 5 .884 .608 .279 .0391 -.00777
+00 .884 .610 .279 .0384 -.00803
Internal crack
KI(O) .861 .551 .224 .0202 -.00884

.864 .587 .228 .0208 -.00901

1

K 3 .863 .555 .227 .0206 -.00896
5
ol .866 .562 .232 .0214 -.00914
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Table 6.17 Mode 1 normalized stress intensity
factors at the center of a semi-elliptical surface
crack in a toroidal shell. The crack is located at
position C of Fig. 6.5, a/h=2, R/h=10, v=.3.

MEMBRANE LOADING
External crack
Lo/h .2 .4 .6 .8 .95

1 .875 .614 .333 .110 .0140
K 3 .877 .618 .335 .108 .0131

5

00

.878 .620 .336 .108 .0130
.880 .625 .341 .109 .0130

Internal crack

1 .879 .623 .342 .1122  .0140
K 3 .871 .605 .322 .1037  .0130
5 .869 .600 .318 .1022  .0129
o .867 .594 .313 .1008 .0129

BENDING
External crack
Lo/h .2 .4 .0 .8 .85
Ri/R

Kl(O) 1 .866 .563 .235 .0243 -.00849
K 3 .868 .568 .237 .0228 -.00905
1b 5 .869 .570 .239 .0231 -.00909
+00 .871 .576 .245 .0251 -.00893

Internal crack
KI(O) 1 .870 .574 .245 .0275 -.00829
o 3 .862 .552 .222 .0174 -.00941
1b 5 .860 .547 .217 .0155 -.00958
+00 .857 .539 .210 .0136 -.00968
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Table 6.18

Mode 1

normalized stress intensity

factors at the center of a semi-elliptical surface
crack in a toroidal shell. The crack is located at
position D of Fig. 6.5, a/h=2, R/h=10, v=.3.

MEMBRANE LOADING
External crack

Ly/h .2 4 .6 .8 .95
KI(O) 1 .879  .623 .342 112 .0140
K 3 .889 .645 .361 .118 .0139
1m 5 .890 .650 .365 .119 .0139
00 .892 .653 .369 121 .0141
Internal crack
K,(0) 1 .875 .614  .333  .110  .0140
K 3 .876 .616 .333 .108 .0138
Im 5 .876 .615 - .332 .108 .0138
+00 .875 .613 .330 .108 .0139
BENDING
External crack
Ly/h .2 4 .6 .8 .85
Ri/R
Kl(O) 1 .870 .574 . .245 .0275 .00829
K 3 .881 .601 .270 .0346 .00827
1b 5 .883 .605 .274 .0363 .00822
+00 .884 .610 .279 .0384 .00803
Internal crack
K,(0) 1 .86  .563  .235  .0243 -.00849
K 3 . 867 .565 .235 .0224 .00906
1b 5 .867 .565 .234 .0220 .00913
+oo .866 .562 .232 .0214 .00914
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Table 6.19 Mode

normalized stress intensity

factors at the center of a semi-elliptical surface
crack in a toroidal shell. The crack is located at
position A of Fig. 6.5, a/h=4, R/h=10, v=.3.

MEMBRANE LOADING
External crack

Lo/h .2 .4 .6 .8 .95
Ri/R
Kl(O) 1 .921 .732 .463 .174 .0232
K 4 .920 727 .455 .168 .0219
1m 7 .920 .725 .452 .165 .0214
+o .919 .720 .443 .159 .0203
Internal crack
Kl(O) 1 .900 .672 .392 .141 .0208
K 4 .901 .672 .390 .138 .0199
1m 7 .901 .672 .389 .137 .0196
0 .902 .674 .389 A .135 .0189
BENDING
¢ External crack
Lo/h .2 .4 .8 .8 .95
Ri/R
Kl(O) 1 .916 .696 .385 .0943 .00107
K 4 .915 .692 .376 .0870 .00245
1b 7 .914 .689 .372 .0841 .00297
% .913 .684 .362 .0770 .00416
Internal crack
Kl(O) 1 .893 .627 .300 .0538 -.00509
K 4 .893 .627 .297 .0507 .00587
1b 7 .894 .627 .296 .0496 .00615
+® .895 .628 .296 .0477 .00673
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Table 6.20 Mode 1 normalized stress intensity
factors at the center of a semi-elliptical surface
crack in a toroidal shell. The crack is located at
position B of Fig. 6.5, a/h=4, R/h=10, v=.3.

MEMBRANE LOADING

External crack

Lo/h .2 .4 .6 .8 .95
Ri/R
Ki(O) 1 .933 .763 .503 .197 .0260
X 4 .935 .769 .509 .198 .0255
im 7 .936 171 .511 .198 .0253
+0 .938 775 .515 .199 .0249
Internal crack
KI(O) 1 .913 .703 .425 .156 .0227
K 4 .917 713 .434 .159 .0224
im 7 .918 .716 .437 .159 .0223
+o0 .921 .723 .444 .162 .0222
BENDING
External crack
Ly/h ‘.2 4 .6 .8 .95
Ri/R
Kl(O) 1 .928 .734 .435 .120 .00142
K 4 .931 .742 .443 .122 .00088
ib 7 .932 .744 .445 .123 .00068
+% .934 .749 .451 .124 .00021
Internal crack
KI(O) 1 .907 .665 .341 .0713 .00363
K 4 .911 .676 .352 .0744 -.00387
1b 7 .913 .680 .356 .0756 .00395
‘o .916 .689 .365 .0783 .00410
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Table 6.21 Mode 1 normalized stress intensity
factors at the center of a semi-elliptical surface
crack in a toroidal shell. The crack is located at
position C of Fig. 6.5, a/h=4, R/h=10, v=.3.

MEMBRANE LOADING
External crack

Lo/h .2 .4 .6 .8 .95
Ri/R

KI(O) 1 .915 712 .437 .162 .0228
K 4 917 714 .435 .155 .0202
1m 7 .917 .715 .437 .156 .0200
+0 .919 .720 .443 .159 .0203

Internal crack
KI(O) 1 .916 .715 .439 .162 .0225
K 4 .907 .686 .402 .141 .0193
Im 7 .805 .680 .395 .138 .0190
+o .802 .674 .389 .135 .0189

BENDING
External crack
Lo/h .2 .4 .6 .8 85
Ri/R

KI(O) 1 .909 .674 .355 .0789 .00259
K 4 .910 .676 .352 .0724 .00453
1b 7 .911 .678 .354 .0728 -.00462
+00 .913 .684 .362 .0770 .00416

Internal crack
KI(O) 1 .910 .676 .356 .0784 .00283
K 4 .900 .643 .312 .0542 .00615
1b 7 .897 .636 .304 .0507 .00655
+00 .895 .628 .296 .0477 -.00673
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Table 6.22

Mode

normalized stress intensity

factors at the center of a semi-elliptical surface
crack in a toroidal shell. The crack is located at
position D of Fig. 6.5, a/h=4, R/h=10, v=.3.

MEMBRANE LOADING

External crack

Lo/h .2 .4 .6 .8 .95
Ri/R
KI(O) 1 .916 .715 .439 .162 .0225
K 4 .935 .766 .500 .190 .0239
im 7 .937 772 .509 .195 .0243
+o .938 .775 .515 .199 .0249
Internal crack
Kl(O) 1 .915 712 .437 .162 .0228
K 4 .922 .726 .448 .163 .0221
1m 7 .923 .726 .448 .163 .0221
+o .921 .723 .444 .162 .0222
BENDING
External crack
Lo/h .2 .4 76 .8 .95
Ri/R
K1(0) 1 .910 .676 .356 .078 .00283
K 4 .931 .738 .432 .112 .00103
1b 7 .933 .745 .443 .118 .00051
+0 .934 .749 .451 .124 .00021
Internal crack
K1(0) 1 .909 .674 .355 .0789 .00259
K 4 .917 .692 .370 .0803 .00394
1b 7 .917 .692 .369 .0800 .00407
+00 .916 .689 .365 .0783 .00410
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Table 6.23 Mode 3 normalized stress intensity
factor at the center of a semi-elliptical surface
crack in a cylindrical shell subjected to in-plane
shear, a/h=.5, v=.3.

IN-PLANE SHEAR

Outer axial crack
Lo/h .2 .4 .6 .8 4 .95

‘R/h

5 .736  .545  .466  .351  .186

Kp(0) 10 737 546  .466  .350  .185
§— 20 737 546  .466  .350  .185
31 50 .738 ~ .547  .466  .350  .184

| s 738  .547  .467  .350  .184

Inner axial crack

5 .740 .550 .470 .352 .185
(0) 10 739 .549 .468 .351 .184
20 .739 .548 .467 .350 .184
31 50 .738 . 547 .467 .350 .184
o .738 .547 .467 .350 .184

=
w

=

Quter circumferential crack
Ly/h .2 4 .6 .8 .95

R/h

5 .736 .545 .466 .351 .186
10 L1737 .546 .466 .350 .185
20 737 .546 .466 .350 .185
31 50 .738 .547 .466 .350 .184

o .738 .547 .467 .350 .184

=
w
~
(=)
~—

=

Inner circumferential crack

5 .740 .550  .470  .352  .185
K,(0) 10 .739  .549  .468  .351  .185
F— 20 .739  .548 468  .350  .184

31 50 .738  .548  .467  .350  .184
s 738  .547  .467  .350  .184
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Table 6.24

Mode

2 normalized stress intensity

factor at the center of a semi-elliptical surface
crack in a cylindrical shell subjected to out-of-
plane shear, a/h=.5, v=.3.

OUT-OF-PLANE SHEAR

Outer axial crack

Lo/h .2 .4 .6 .8 .95
R/h

5 .988  .883  .684  .466  .277

,K2(0) 10 .988 .883 .685 .467 .277
K 20 . 988 .883 .685 .467 .277
20 50 .988 .883 .685 .467 277
+0 .988 .883 .685 .467 .277

Inner axial crack

5 .088 .883 .685 .467 .277

K2(0) 10 .988 .883 .685 .467 .277
K 20 .988 .883 .685 .467 .277
20 50 .988 .883 .685 .467 .277
+ .988 .883 .685 .467 .277

Outer circumferential crack
Lo/h .2 .4 .6 .8 .95
R/h

5 .988 .882 .682 .463 .274

K,(0) 10 .98  .883  .684  .466  .276
K 20 .988 .883 .685 .467 .277
20 50 . 988 .883 .685 .467 .277
+0 . 988 .883 .685 .467 .277

Inner circumferential crack

5 .088 .882 .683 .464 .275
K2(0) 10 .988 .883 .684 .466 .277
K 20 .988 .883 .685 .467 .277
20 50 .988 .883 .685 .467 .277
00 .988 .883 .685 .467 .277
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Table 6.25 Mode 3 normalized stress intensity
factor at the center of a semi-elliptical surface
crack in a cylindrical shell subjected to
twisting, a/h=.5, v=.3.

TWISTING
Outer axial crack :
Ly/h .2 .4 .6 .8 .95
R/h ’

5 .710 .408 .102  -.637 -6.01
10 711 .409 .102  -.637 -6.01
20 711 .410 .103 -.637 -6.01
3T 50 712 .410 .103  -.637 -6.01

40 712 .411 .103 -.636 -6.01

=
w
~
o
=

=

Inner axial crack

5 .714 .415 .110 -.624 -5.94
K,(0) 10 .713  .413  .107 -.630 -5.97
=—" 20 .713 .412 .105 -.633 .  -5.99
3T 50 .712 .411 .104 -.635 -6.00

s 712 .411  .103 -.636 -6.01

2

Juter circumferential crack .
Ly/h .2 4 6. .8 .95

R/h

5 .710 .408 .101  -.637 -6.01

K3(0) 10 711 .409 .102  -.638 -6.01
= 20 711 .410 .102  -.637 -6.01
3T 50 712 .410 .103 -.637 -6.01
0 712 .411 .103 -.636 -6.01

Inner circumferential crack

5 .714 .415  .111 -.622 -5.93
K;0) 10 713 413  .107 -.629 -5.97
¥ 20 .713 412 .106 -.632 -5.98
3T 50 .712  .411  .104 -.634 -6.00
+ 712  .411  .103 -.636- -6.01
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Table 6.26 Mode 3 normalized stress intensity
factor at the center of a semi-elliptical surface
crack in a cylindrical shell subjected to in-plane
shear, a/h=1., v=.3.

IN-PLANE SHEAR

Outer axial crack
Lo/h .2 .4 .6 .8 .95

R/h

5 .797 .632 .576 .492 .304
10 .798 .633 .576 .490 .301
20 .799 .634 .576 .489 .300
31 50 .799 .635 .576 .489 .299

»0 .800 .635 .577 .489 .299

=
w
—
o
~

=

Inner axial crack

5 .803 .641 .585 .496 ° .303
10 .802 .639 .581 .493 .301
20 .801 .637 .579 .491 .300
31 50 .800 .636 .578 .490 .299

+0 .800 - .635 .577 .489 .299

-~
w
~
o
=

=

4

Quter circumferential crack

Lo/h -2 4 6 .8 _ .95
R/h
5 .797  .631  .575  .492  .305
K,(0) 10  .798  .633  .575  .490  .302
©— 20 799 634  .576  .480  .300

31 50 .799 .634  .576 .489 .299
40 .800 .635 .577 .489 .299

Inner circumferential crack

5 .803  .642  .586  .498  .304
K,0) 10  .802  .639  .582 _ .494 .30l
==— 20 .801  .638  .580 . .491  .300
31 50 .800  .636  .578  .490  .299

+» 800  .635  .577  .489  .299
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Table 6.27

Mode 2 normalized stress intensity

factor at the center of a semi-elliptical surface
crack in a cylindrical shell subjected to out-of-
plane shear, a/h=1., v=.3.

OUT-OF-PLANE SHEAR

Duter axial crack

LO/h .2 .4 .6 .8 .95
R/h

5 .996 .953 .850 .691 .485 -
K2(0) 10 .996 .953 .851 .692 .486
T 20 .996 .953 .851 .693 .487
20 50 .996 .953 .851 .693 .487
+00 .996 .953 .851 .693 .487

Inner axial crack
5 .996 .953 .851 .693 .486
K2(0) 10 .996 .953 .851 .693 .487
X 20 .996 .953 .851 .693 .487
20 50 .996 .953 .851 .683 .487
: +% .996 .953 .851 .693 .487
Outer circumferential crack
Lo/h .2 .4 .6 .8 .95
R/h ’
5 .995 .951 .844 .679 .472
KZ(O) 10 . 996 .953 .849 .688 .482
K 20 .996 .953 .850 .691 .485
20 50 .996 .953 .851 .693 .487
+o .996 .953 .851 .693 .487
Inner circumferential crack

5 .995 .952 .846 .685 .477
KZ(O) 10 .996 .953 .850 .691 .485
K 20 .996 .953 .851 .693 .487
20 50 .996 .953 .851 .693 .487
»0 .996 .953 .851 .693 .487
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Table 6.28 Mode 3 normalized stress intensity
factor at the center of a semi-elliptical surface
crack in a cylindrical shell subjected to
twisting, a/h=1., v=.3.

TWISTING
* QOuter axial crack
Lo/h .2 .4 .6 .8 .95
R/h

5 .776 .519 .273 -.334 -5.25

K3(0) 10 777 .520 .274 -.337 -5.27
K 20 .778 .521 .275 -.337 -5.27
3T 50 .779 .522 .276 -.336 -5.27

o .779 .523 .277 -.335 -5.27

Inner axial crack

5 .783 .531 .292 -.298 -5.05
10 .781 .528 .286 -.314 -5.15
20 .780 .526 .282 -.324 -5.20
3T 50 .780 .525 .279 -.330 -5.24

o 779 .523 .277 -.335 -5.27

-~

w
~
=
g

~

OQuter circumferential crack
Ly/h .2 4 .6 .8 .95

R/h

5 .776 .517 .271  -.336  -5.27
10 777 .519 .273 -.339 -5.28
20 .778 .521 .274 -.338 -5.28
3T 50 779 .522 .275 -.337 -5.28

o 779 .523 .277 -.335 -5.27

[l
w
~
(=]
=

=

inner circumferential crack

5 .783 .533 .206 -.289 -4.99
10 .782 .529 .287 -.310 -5.12
20 .781 .526 .283 -.322 -5.19
3T 50 .780 .525 .280 -.329 @ -5.23

0 779 .523 .277  -.335 -5.27

~
(=)
=

|

=~
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Table 6.29 Mode 3 normalized stress intensity
factor at the center of a semi-elliptical surface
crack in a cylindrical shell subjected to in-plane
shear, a/h=2., v=.3.

IN-PLANE’SHEAR_

Outer axial crack
Lo/h .2 .4 .6 .8 .95

"R/h

5 .826 .684 - .659 .631 .457
10 . 827 .684 .658 .626 .449
20 .828 .685 .658 .624 .445
31 - 50 .829 .686 ~ .658 .623 .443

s .829 .687 .659 .623 .442

=~
w
~
o
Nad

!

Inner axial crack

5 .833 .696 .673 .641 .458
10 .832 .693 .668 .633 .451
.831 .691 .664 .629 .447
31 50 .830 .689 .662 .625 .444

0 .829 .687 .659 .623 .442

=<|:’<
W
~
=)
=
)
o

Outer circumferential crack
Ly/h .2 4 6 .8 .95

R/h

5 .825 .682 .657 .632 .463
10 .827 .683 .657 .626 .451
20 .828 .685 .657 .623 .446
31 50 .828 .686 .658 .623 .443

+0 .829 .687 .659 .623 .442

=
w
—~
(=)
st

o)

Inner circumferential crack

5 .834 .699 .677 .647 .463
10 .832 .694 .670 .636 .452
20 .831 .692 .665 .630 .447
31 50 .830 .689 .662 .626 .444

+0 .829 .687 .659 .623 .442

wﬂ
P
(=)
=

|

=
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Table 6.30

Mode

normalized stress intensity

factor at the center of a semi-elliptical surface -
crack in a cylindrical shell subjected to out-of-
plane shear, a/h=2., v=.3.

OUT-OF-PLANE SHEAR

Quter axial crack

Lo/h .2 .4 .6 .8 .95
R/h '
5 .999  .986  .048  .871  .716
Ky(0) 10  .999  .986  .950  .874  .720
K 20 . 999 .986 .950 .875 .722
20 50 .999 .986 .950 .875 .723
+00 .999 .986 .950 .876 .723
Inner axial crack

5 .999 .986 .950 .876 .722

Ky(0) 10 .99  .986  .950  .876  .723
. 20 .999 .986 .950 .876 .723
20 50 .999 .986 .950 .876 .723
S0 .999 .986 .950 .876 .723

Quter circumferential cr#ck
Ly/h .2 4 .6 .8 .95
R/h '

5 .998 .982 .936 .845 .678

K2(0) 10 .999 .985 .946 .865 .707
K 20 .999 .986 .949 .872 .717
20 50 .99¢ .986 .950 .875 .721
+00 .899 .986 .950 .876 .723

Inner circumferential crack

5 . 908 .983 .942 .857 .6985

K2(0) 10 .999 .985 .948 .872 .716
K 20 .999 .986 .950 .876 .722
20 50 .999 .986 .950 .876 .723
0 .999 .986 .9850 .876 .723
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Table 6.31 Mode 3 normalized stress intensity
factor at the center of a semi-elliptical surface
crack in a cylindrical shell subjected to

twisting, a/h=2., »=.3.

TWISTING
Outer axial crack
Lo/h .2 .4 . .6 ;8 .95
R/h
5 .807 .581 = .398 -.007 -3.63
K;(0) 10 .808  .583  .397 -.018 -3.72
K 20 .809 .584  .398 -.022 -3.75
3T 50 .810  .585 .399 -.022 -3.76
+00 .811 .587 .401 -.020 -3.75
Inner axial crack
5 .815  .598  .427  .057 -3.21
K;(0) 10  .813 .54  .417  .027 -3.43
K 20 .812 .591 .411 .008 -3.56
3T 50 .812 .589 .406 -.007 -3.66
+00 .811 .587 .401 -.020 -3.75
Outer circumferential crack
Lo/h .2 .4 .6 .8 .95
R/h
5 .806 .579 .395 -.009 -3.63
K3(0) 10 .807 .581 .395 -.022 -3.74
K 20 .809 .583 .396 -.025 -3.77
3T 50 .810 .585 .398 -.024 -3.78
%0 .811 .587 .401 -.020 -3.75
Inner circumferential crack
5 .816 .602 .436 .084 -3.00
K3(O) 10 .814 .596 .422 .039 -3.34
. 20 .813 .592 .413 .013 -3.52
3T 50 .812 .590 .407 -.005 -3.65
+00 .811 .587 .401 -.020 -3.75
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Table 6.32 Mode 3 normalized stress intensity
factor at the center of a semi-elliptical surface
crack in a cylindrical shell subjected to in-plane
shear, a/h=4., v=.3.

IN-PLANE SHEAR

Quter axial crack
Lo/h .2 .4 .6 .8 .95

R/h

5 .837 .709 712 .745 .625
10 .838 .709 .709 .737 .610
20 .838 .709 .708 .732 -~ .601
31 50 .839 .710 .708 .729 .594

40 .840 712 .709 .728 .580

=
w
~
o
~

=

Inner axial crack

5 .843 .720 .726 .757 .627
10 .843 .718 721 .747 .613
20 .842 .716 717 .740 .604
31 50 .841 .714 .713 .734 .597

+0 .840 712 .709 .728 .580

=

w
~
(=}
~

=

Quter circumferential crack

Ly/b -2 4 .6 .8 .95
R/h

5 .836 .707 .711 .750 .643
10 .837 707 .708 737 .616
20 .838 .708 .707 .731 .602
31 50 .839 .710 .707 .728 .594

0 .840 .712 .709 .728 .590

-

w
~
o
=

=

Inner circumferential crack

5 .845 .725 .733 771 .645

K3(0) 10 .844 .721 .725 .754 .620
" 20 .843 .718 .719 .743 .606
31 50 .841 = .715 .714 .735 .597

+o .840 712 .709 .728 .580
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Table 6.33 Mode 2 normalized stress intensity
factor at the center of a semi-elliptical surface
crack in a cylindrical shell subjected to out-of-
plane shear, a/h=4., v=.3.

OUT-OF-PLANE SHEAR

Outer axial crack
Lo/h .2 .4 .6 .8 .95
R/h
5 1.00 .996 .986 .959 .879
K,(0) 10 1.00 .996  .987  .962  .884
K 20 1.00 .997 .887 .963 .886
20 50 1.00 .997 .988 ,964 .888
+00 1.00 .997 .988 .965 .889
Inner axial crack
5 1.00 .996 .987 .963 .886
K2(0) 10 1.00 .997 .088 .965 .888
K 20 1.00 .997 .988 .965 .889
20 - 50 1.00 .997 .988 .965 .889
+00 1.00 .997 .988 .965 .889
Juter circumferential crack
Ly/b -2 4 .6 .8 .95
R/h
5 .999  .992  .968  .916  .805
K,(0) 10 1.00 .995 .981  .047  .858
K 20 1.00 .996 .985 .958 .877
20 50 1.00 .997 .987 .963 .885
+00 1.00 .997 .988 .965 .889
Inner circumferential crack
53 .999 .993 .973 .928 .828
K,(0) 10 1.00 .995  .984  .955  .872
K 20 1.00 .996 - .987 .963 .885
20 50 1.00 .997 .988 .965 .889
+00 1.00 .997 .988 .965 .889
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Table 6.34 Mode 3 normalized stress intensity
factor at the center of a semi-elliptical surface
crack- in a cylindrical shell subjected to
twisting, a/h=4., v=.3.

TWISTING
OQuter axial crack
Ly/h -2 4 .6 .8 .95
R/h

5 .819 .611 .473 .251 -1.80
.819 .611 .469 .228  -2.00
.820 .611 .467 .216  -2.12
3T 50 .821 .612 .467 .210 -2.19

+o .822 .615 .470 .211  -2.21

N|P§
(X
~~~
(=}

g
D) =
oo

Inner axial crack

5 .825  .626  .499  .314 -1.33
(0) 10 .825  .623  .491  .284 -1.60
20 .824  .621  .484  .259 -1.81
3T 50 .823  .618  .478  .236 -2.00

+o 822  .615  .470  .211 -2.21

=
w

=

Quter circumferential crack
Lo/h .2 .4 .6 .8 .95

R/h

5 .817 .609 .472 .261 -1.64
(0) 10 .818 .609 .466 .227 -1.98
20 .819 .610 .465 212 -2.14
3T 50 .820 .612 .466 .207 -2.21

A .822 .615 .470 211 -2.21

~
w

=

Inner circumferential crack

5 .827 .631 .513 .367 -.854
10 .826 .627 .499 .311 -1.36
20 .825 .622 .489 272 -1.70
3T 50 .823 .619 .479 .241  -1.96

Rl .822 .615 .470 .211 -2.21 -

=

w
~
(=)
=

|

=
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Table 6.35 Mode 3 normalized stress intensity
factor at the center of a semi-elliptical surface
crack in a toroidal shell subjected to in-plane
shear. Crack is at position A of Fig. 6.5, R/h=10,
v=.3.

IN-PLANE SHEAR
a/h=1, External
Lo/h .2 .4 .6 .8 .95
Ri/h

1 .798 .632 .575 .490 .303
- 3 .798 .632 .575 .490 .302
5 .798 .632 .575 .490 .302
0 .798 .633 .575 .490 .302

a/h=1, Internal

1 .802 .640 .583 .485 .302
. 3 .802 .640 .583 .494 .302
5 .802 .640 .583 .494 .302
® .802 .639 .582 .494 .301

f
a/h=2, External
Lo/h .2 .4 .6 .8 .95

1 .826 .683 .657 .627 .454
o 4 .826 .683 .656 .626 .453
7 .826 .683 .656 .626 .452
w .827 .683 .657 .626 .451

a/h=2, Internal

1 .833 .696 .672 .639 .455
K 4 .833 .695 .671 .638 .454
7 .833 .695 .670 .637 .453
L .832 .694 .670 .636 .452
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Table 6.36 Mode 2 normalized stress intensity
factor at the center of a semi-elliptical surface
crack in a toroidal shell subjected to out-of-
plane shear. Crack is at position A of Fig. 6.5,
R/h=10, v=.3.

OUT-OF-PLANE SHEAR

a/h=1, External

Lo/h .2 .4 .6 .8 .95
Ri/h '
K2(0) 1 .996 .853 .848 .688 .482
K 3 .996 .953 .848 .688 .482
20 5 . 996 .953 .849 .688 .482
+0 . 996 .953 .849 .688 .482
a/h=1, Internal
K2(0) 1 .996 .953 .850 .691 .485
K 3 .996 .953 .850 .691 .485
20 5 .996 .953 .850 .691 .485
+0 .996 .953 .850 .691 .485
¢
a/h=2, External
Lo/h 2 .4 .6 .8 .85
Ri/h
K, (0) 999  .985  .945  .864  .706

.999 .985 .945 .865 .707

1

K 4 .999 .985 .945 .865 .706
7
® .9989 .985 .946 .865 - .707

a/h=2, Internal

1 .999 .985 .948 .872 .716
K 4 .999 .985 .948 .872 .716
7 .999 .985 .948 .872 .716
© .999 .985 .948 .872 .716
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Table 6.37 Mode 3 normalized stress intensity
factor at the center of a semi-elliptical surface
crack in a toroidal shell subjected to twisting.

Crack is at position A of Fig. 6.5, R/h=10, v=.3.

TWISTING

a/h=1, External

Ly/h -2 .4 .6 .8 .95
Ri/h-

K3(0) 1 777 .519 272 .339 -5.28
. 3 777 .519 272 .338 -5.28
3T 5 777 .519 272 .339 -5.28
+% 777 .519 .273 .33 -5.28

a/h=1, Internal
K;0) 1 .782  .530  .200 -.304 -5.08
o 3 .782 .530 .289 .306 -5.10
- 3T 5 .782 .529 .289 .308 -5.10
+o .782 .529 . 287 .310 -5.12

a/h=2, External
Lo/h .2 .4 .6 .8 .85

Ri/h

K;0) 1 .807 .580  .395 -.019 -3.71
. 4 .807 .581 .395 .021 -3.73
3T 7 .807 .581 .395 .021 -3.73
+o0 .807 .581 .395 022 -3.74

a/h=2, Internal
K3(0) 1 .815 .598 .426 .052 -3.24
K 4 .814 .597 .424 .046 -3.29
3T 7 .814 . 597 .423 .044 -3.30
+0 .814 .596 .422 .039 -3.34
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Table 6.38 Mode 3 normalized stress intensity
factor at the center of a semi-elliptical surface

crack

in a toroidal shell subjected to in-plane

shear. Crack is at position B of Fig. 6.5, R/h=10,

v=.3.

IN-PLANE SHEAR

a/h=1, External
Lo/h 2 .4 .6 .8 .95

Ri/h

K;0) 1 .798  .632  .575  .400  .302
. 3 .798 .633 .575 .490 .302
31 5 .798 .633 .575 .490 .302
»00 .798 .633 .576 .490 .301

a/h=1, Internal
K3(0) 1 .802 .640 .583 .494 .302
o 3 .802 .639 .582 .494 .301
31 5 .802 .639 .582 .494 .301
o .802 .639 .581 .493 .301

a/h=2, External
Lo/h 2 4 .6 .8 .95

Ri/h

KQ(O) 1 .826 .683 .657 .627 .453
K 4 .827 .684 .657 .626 .451
31 7 .827 .684 .657 .626 .450
+%0 . 827 .684 .658 .626 .449

a/h=2, Internal
K3(0) 1 .833 .695 .671 .637 .454
K 4 .832 .694 .669 .635 .452
31 7 .832 .694 .669 .635 .452
) +0 .832 .693 .668 .633 .451
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Table 6.39 Mode 2 normalized stress intensity
factor at the center of a semi-elliptical surface
crack in a toroidal shell subjected to out-of-
plane shear. Crack is at position B of Fig. 6.5,
R/h=10, »=.3.

OUT-O0F-PLANE SHEAR

- a/h=1, External
Lo/h 2 . .4 .6 .8 .95

Ri/h

1  .996  .953  .850  .691  .485
2" 3 996 .953 .850 . .692  .486
Koo 5 996 .953 .850  .602  .486

»  .996 .953  .851  .692  .486

a/h=1, Internal

1 .996  .953  .851  .693  .487
2" 3 996  .953 .851  .693  .487
Ko 5 996 .953  .851  .603  .487
+» .09  .953  .851  .693  .487

a/h=2, External
2 .4 .6 .8 .95

=
~
(=

1 .999 .986 .948 .871 .716
K 4 .999 .986 .949 .873 .719
7 .999 .986 .949 .873 .719
® .999 .886 .950 .874 .720

a/h=2, Internal

Ky0) 1 .999 .98  .950  .876  .722
2" 4 999 .98  .950 .876  .723
Ko 7 999 .98 .951  .876  .723

s .999  .986  .950  .876  .723
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Table 6.40

Mode

3 normalized stress intensity

factor at the center of a semi-elliptical surface
crack in a toroidal shell subjected to twisting.
Crack is at position B of Fig. 6.5, R/h=10, v=.3.

TWISTING

a/h=1, External

Lo/h .2 .4 .6 .8 .95
Ri/h

Ky(0) 1 .777 519 273 -.337 -5.27
X 3 777 .520 .273 .337 -5.27
3T 5 777 .520 .273 .337 -5.27
+0 777 .520 274 .337_ -5.27

a/h=1, Internal
Kg(0) 1 .782 520  .289 -.307 ~-5.10
K 3 .782 .529 .288 .310 -5.12
3T 5 .782 .529 .287 .311 -5.13
00 .781 .528 .286 .314 -5.15

a/h=2, External
Ly/h -2 4 .6 .8 .95

Ri/h

K3(0) 1 .807 .581 .396 .017 -3.70
K 4 .808 .582 .397 .018 -3.71
3T 7 .808 .582 .397 .018 -3.71
+00 .808 .583 .397 .018 -3.72

a/h=2, Internal
K;0) 1 .814 597  .423 044 -3.31
. 4 .814 .596 .420 .036 -3.37
3T 7 .814 .595 .419 .033 -3.39
+00 .813 .594 .417 .027 -3.43
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Table 6.41

Mode 3

normalized stress intensity

factor at the center of a semi-elliptical surface
crack in a toroidal shell subjected to in-plane
shear. Crack is at position C of Fig. 6.5, R/h=10,
v=.3.
IN-PLANE SHEAR
_ a/h=1, External
Lo/h .2 .4 .6 .8 .95
Ri/h
Ka(0) 1 .800 .635  .578  .491 .301
- 3 .799 .633 .576 .490 .301
31 5 .798 .633 .575 .490 .301
+0 .798 .633 .575 .490 .302
a/h=1, Internal
K3(0) 1 .800 .636 .579 .492 .301
. 3 .801 .638 .581 .492 .301
31 5 .802 .639 .581 .493 .301
+0 .802 .639 .582 .494 .301
4
a/h=2, External
Lo/h .2 .4 .6 .8 .95
Ri/h
K3(0) 1 .829 .687 .661 .628 .450
X 4 .827 .684 .657 .625 .449
31 7 .827 .684 .657 .625 .450
+00 .827 .683 .657 .626 .451
a/h=2, Internal
K3(0) 1 .830 .690 .564 .630 .449
- 4 .832 .693 .668 .633 .450
31 7 .832 .694 .669 .634 .451
+0 .832 .694 .670 .636 .452
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Table 6.42 Mode 2 normalized stress intensity
factor at the center of a semi-elliptical surface
crack in a toroidal shell subjected to out-of-
plane shear. Crack is at position C of Fig. 6.5,
R/h=10, »=.3.

OUT-OF-PLANE SHEAR

a/h=1, External

Ly/h .2 .4 .6 8 .95
Ri/h

Ky(0) 1  .996  .953  .849  .689  .483
K 3 .996 .953 .849 .689 .483
20 5 .996 .953 .849 .689 .482
+00 .996 .953 .849 .688 .482

a/h=1, Internal
K2(0) 1 .996 .953 .850 .691 .485
K 3 .996 .953 .850 .691 .485
20 5 .996 .953 .850 .691 .485
0 .996 .953 .850 .691 .485

!

a/h=2, External

Ly/h .2 4 .6 .8 .95
Ri/h

KZ(O) 1 .999 .985 .946 .867 .710
K 4 .999 .985 .946 .866 .708
20 7 .999 .985 .946 .865 .708
+0 .999 .985 .946 .865 .707

a/h=2, Internal
K, (0) .99  .985  .948  .871  .716

.999 .985 .948 .872 .716

1

K 4 .999 .985 .948 .872 .716
7
ol .999 .985 .948 .872 716
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Table 6.43 Mode 3 normalized stress intensity
factor at the center of a semi-elliptical surface
crack in a toroidal shell subjected to twisting.
Crack is at position C of Fig. 6.5, R/h=10, v=.3.

TWISTING
a/h=1, External
Lo/h .2 .4 .6 .8 .95
Ri/h :

1 779 .523 .278 -.330 -5.23
K 3 778 .521 .274 -.337 -5.28
5 77 .520 .273 -.337 -5.27
w 77 .519 .273 -.338 -5.28

a/h=1, Internal

1 .780 .525 .281 -.323 -5.19
K 3 .781 .527 .285 -.316 -5.16
5 .781 .528 .286 -.314 -5.14
o .782 .529 .287 -.310 -5.12

a/bh=2, External
2

Ly/h 4 .6 .8 .85

Ri/h
KS(O) 1 .810 . 586 .403 -.006 -3.64
K 4 .808 .582 .396 -.022 -3.75
3T 7 .808 .582 .35 -.023 -3.75
+0 .807 .581 396 -.022 -3.74

a/h=2, Internal

K3(0) .811 .590 .410 011 -3.53

.814 .595 .419 .033 -3.38

1

K 4 .813 .594 .418 .028 -3.41
7
w .814 .596 .422 039 -3.34
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Table 6.44 Mode 3 normalized stress intensity
factor at the center of a semi-elliptical surface
crack in a toroidal shell subjected to in-plane
shear. Crack is at position D of Fig. 6.5, R/h=10,
v=.3. -

IN-PLANE SHEAR

a/h=1, External
Lo/h .2 .4 .6 .8 .95
Ri/h

1 .800 .636 .579 .492 .301
o 3 .799  .634 .576 .490 .301
5 .799 .634 .576 .490 .301
L .798 .633 .576 .490 .301

a/h=1, Internal

1 .800 .635 .578 .491 .301
Ko 3 .801 .637 .580 .492 .300
5 .801 .638 .580 .492 .301
0 .802 .639 .581 .493 .301

a/h=2, External
2

Lo/h .4 .6 .8 .95

Ri/h
Kz(0) 1 .830 690  .664  .630  .449
K 4 .828 .686 .659 .626 .448
31 7 .828 .685 .658 .626 .448
+00 .827 .684 .658 .626 .449

a/h=2, Internal

K3(0) 1 .829 .687 .661 .628 .450
K. 4 .831 .691 .665 .631 .449
31 7 .831 .692 .666 .632 .449
+o0 .832 .693 .668 .633 .451
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Table 6.45 Mode 2 normalized stress intensity
factor at the center of a semi-elliptical surface
crack in a toroidal shell subjected to out-of-

plane shear. Crack is at position D of Fig. 6.5,
R/h=10, v=.3.

OUT-0F-PLANE SHEAR

a/h=1, External

, Lo/h .2 .4 .6 .8 .95

Ri/h ‘
K,(0) 1 .996 ~.953  .850  .691  .485
K 3 .996 —. .953 .851 .692 .486
20 5 ~.996 .953 -.851 .692 .486
+0 .996 .953 .851 .692. .486

a/h=1, Internal

K2(O) .996 .953 .849 .689 .483

1
3 .996 .953 .851 .692 .486
20 5 .996 .953 .851 .693 .487
+» .996 .953 .851 .693 .487

a/h=2, External

Lo/h .2 .4 .6 .8 .95
Ri/h

\
Ky(0) 1 .999 .985  .948 871  .716
K 4 .999 .986 .950 .875 .721
20 7 .999 . 986 .950 .875 .721
+0 .999 .986 .950 .874 .720

a/h=2, Internal

K,0) 1 .999 .985  .046  .867  .710
K 4 .999 .986 .950 .875 .722
20 7 .999 . 986 .950 .876 .723

00 .999 .986 .950 .876 .723
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Table 6.46 Mode 3 normalized stress intensity
factor at the center of a semi-elliptical surface
crack in . a toroidal shell subjected to twisting.
Crack is at position D of Fig. 6.5, R/h=10, v=.3.

TWISTING
- a/h=1, External
Ly/h .2 4 .6 .8 .95
Ri/h

1 .780 .525 .281 -.323 -5.19
o 3 .778 .522 .276 -.334 -5.26
5 .778 .521 .275 -.336 = -5.26
o 777 .520 .274 -.337 -5.27

a/h=1, Internal

-1 779 .523 .278 -.330 -5.23

. 3 .780 .526 .282 -.322 -5.19
5 .781 .527 .284 -.319 -5.17

0 .781 .528 .286 -.314 -5.15

a/h=2, External
Ly/h .2 4 .6 .8 .95

1 .811 .580 .410 .011  -3.53
K 4 .809 .584 .400 -.015 -3.70
7 .809 .583 .398 -.017 -3.71
w .808 .583 .397 -.018 -3.72

a/h=2, Internal

1 .810 .586 .403 -.006 -3.64
K 4 .813 .592 .413 .014 -3.52
7 .813 .592 .415 .019 -3.48
© .813 .594 .417 .027 -3.43
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Figure 6.1 Comparison of the mode 1 LSM with
results from Ref. [34] for the normalized SIF
along an axial, internal, semi-elliptical surface
crack in a pressurized cylinder. Crack surface
pressure is taken into account, v=.3.
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Figure 6.2 Comparison of the modé 1 LSM with
results from Ref. [40] for the normalized SIF

along an axial, internal,

crack
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AXIAL CRACK, Ry /h=10
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pressure is not taken into account, v=.3.
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271 Circumferential internal

surface crack, a/h=2
Cylinder, R/h=10
Tension Lo/h=. 8

(Ew)/(act)

(Ew)/(aoy)

Figure 6.3 Out-of-plane displacement w(0+,y) as
measured from y=0 in the deformed position for a
cylinder with a circumferential, external, semi-
elliptical surface crack subjected to either

membrane loading (0m=ﬁx/h) or bending (0b=6ﬁ/h2),
v=.3.
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(Ew)/(aot)
&

Tension
Cylinder, R/h=10
Circumferential external
surface crack, a/h=2

(Ew)/(aow)

v/a

Figure 6.4 Out-of-plane displacement w(0',y) as
measured from y=0 in the deformed position for a
cylinder with a circumferential, internal, semi-
elliptical surface crack subjected to either
membrane loading (omzﬁx/h) or bending (ab=6ﬁ/h2),
v=.3.

268

o 7 2 3




Figure 6.5 Geometry of the toroidal shell.
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CHAPTER 7

Conclusions and Future Work

The severity of the underlying ;ssumptions of the line-spring
model are such that verification with three-dimensional solutionms is
necessary. Such comparisons, in this study as ﬁell as in others, show
that the model is quite accurate, and therefore, its use in extensive
parameter studies is justified. It was shown in Chapter 4 that fo;
practical crack length to plate thickness ratios of about a/h=1, a
plate theory that includes transverse shear deformation gives better
results than the classical theory. The higher order plate theory does
not seem to be necessary for a/h greater than about 2. When using the
LSM with shallow shell theory it is more important to include
transverse shear effects, because this theory is asymptotically
correct for short cracks. The validity of the shallow shell theory
for long cracks is not fully known, however, for surface cracks of
practical dimensions it is expected to be accurate. Comparison of LSM
solutions obtained in this study with three-dimensional solutions for
semi-elliptical internal cracks in cylinders are also quite accurate.

It is still not understood why the model works as well as it does
;lose to the crack ends. This is a rather curious problem. Since the
stress intensity factors are defined by the model to be in a plane
perpendicular to the plate surfaces, and not perpendicular to the
crack front as they should be defined, the results at the ends of a
semi-elliptical crack should be poor, but they are not. Several
factors apparently act to cancel each other out. If these factors are
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understood, and separaﬁely accounted for, the extension of the model
to other crack problems will be better achieved.

This has special importance in the proposed skew-symmetric or
mixed-mode line-spring model  investigated in this study.
Unfortunately, there are no three-dimensional solutions Vfor
verification; only the success of the symmetric case can give
confidence that the results will be of some use. There are additional
assumptions involved that do not have to be made in the mode 1 case.
The first restricts the model to coplanar crack growth. The results
may be _considefed as upper bounds for materials which have a weak
cleavage rplane. 0f course, cracks along these planes would be of
concern. The next assumption relates to the previously discussed
problem in mode 1 which involves the crack front curvature and the
plane in which the SIF is defined. Although in the mode 1 case this
problem is somehow overcome, this effect is more critical in the skew-
symmetric case because there are two stresé intensity factors as
opposed to one for the symmetric case. To illustrate this problenm,
consider that for a semi-elliptical crack in which a primary mode 3
loading in the center will become a primary mode 2 loading towards the
ends, and vice versa. This is not observed in the results. There is
no built in mechanism in the model that accounts for this, (but there
isn’t for the mode 1 case either). Perhaps the combination of K2 and
K3 in the following generalized energy release rate equation is more

accurate than the individual K values.

2
d 122 2 1 .2
- =6=7% {Kl*Kz*l-uxs}' (7.1)
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If the model can be verified, and improved, the shell with a crack at
an arbitrary angle with respect to a principal line of curvature would
be an important problem for future research.

Investigations into the endpoint behavior of the line-spring
model have led to important conclusions about the ability of the model
to. predict stresses in front of the "crack tip". This also has
applications to the cfack interaction probiem, and to possible uses of
the model to study crack propagation in the length direction, in
addition to the depth direction. It was found that only when the
crack profile behaves like

§ = fo(l—t2 1/4 (7.2)

near the endpoints, does the numerical procedure easily converge.
However, for rectangular profiles, convergence is acceptable. For the
semi-ellipse, it is not.

An important application of the LSM was to solve the contact
plate bending problem. Here the flexibility of the model to allow for
any crack shape is exploited. Future work in this area includes
predicting crack shapes for mode 1 crack growth assuming a constant K
condition. Solution of this problem would involve the same iterative
procedure that was used for the contact case.

It should be emphasized that all solutions presented in this
study correspond to the perturbation problem, where constant loading
along the length of the crack has been assumed. To make use of the
results, the solution to the uncracked shell must first be obtained

along the plane of the crack. Then superposition principles apply.
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There may be cases where the solution to this problem varies
considerably along the crack length, and studies into this effect may
be necessary. This may be done in a straightforward manner.

The use of displacement quantities as unknowns in the formulation
of the problem leads to strongly singular integral equations, rather
than singular integral equations which result from using displacement
derivatives. 'Although it is nmore convenient to deal directly with the.
displacement quantities, this formulation intfoduces log singulafities
into the equations which require mbre asymptotic analysis in order to
have acceptable numerical.convergence. In this study it was necessary
to evaluate these log integrals in closed form. Sometimes log terms
of the form (t—y)nlnlt—yl can be extracted from the Fredholm kernel
and calculated in closed form to slightiy improve convergence, but in
general it is not worth the extra effort. The collocation method of
solving the integral equations was found to be beéter and more
convenient than the quadrature technique. If has been my experience
that orthogonal polynomials should be uséd as fitting functions when

using the LSM as opposed to simpler functions such as power series.

273




10.

11.

12.

LIST OF REFERENCES

Benthem, J. P., "The Quarter-Infinite Crack in a Half Space;
Alternative and Additional Solutions", International Journal of
Solids and Structures, Vol. 16, 1980, pp. 119-130.

Rice, J. R. and Levy, N., "The Part-Through Surface Crack in an
Elastic Plate", ASME Journal of Applied Mechanics, Vol. 39, 1972,
pp. 185-194.

Rice, J. R., "The Line Spring Model for Surface Flaws", The
Surface Crack: Physical Problems and Computational Solutionms,
Swedlow, J. L., ed., ASME New York, 1972, pp. 171-186.

Williams, M. L., "On the Stress Distribution at the Base of a
Stationary Crack", ASME Journal of Applied Mechanics, Vol. 24,
1957, pp. 109-114. '

Williams, M. L., "The Bending Stress Distribution at the Base of
a Stationary Crack", ASME Journal of Applied Mechanics, Vol. 28,
1961, pp. 78-82.

Knowles, J. K. and Wang, N. M., "0On the Bending of an Elastic
Plate Containing a Crack", Journal of Mathematics and Physics,
Vol. 39, 1960, pp. 223-236.

Reissner, E., "The Effect of Transverse Shear Deformation on the
Bending of Elastic Plates", ASME Journal of Applied Mechanics,
Vol. 12, 1945, pp. A69-A77.

Reissner, E., " On Bending of Elastic Plates", Quarterly of
Applied Mathematics, Vol. 5, 1947-1948, pp. 55-68.

Hartranft, R. J. and Sih, G. C., "Effect of Plate Thickness on
the Bending Stress Distribution Around Through Cracks, " Journal
of Mathematics and Physics, Vol. 47, 1968, pp. 276-291.

Wang, N. M., "Effects of Plate Thickness on the Bending of an
Elastic ~ Plate~ Containing a Crack", Journal of Mathematics and
Physics, Vol. 47, 1968, pp. 371-390.

Civelek, M. B. and Erdogan, F., "Elastic-Plastic Problem for a
Plate with a Part-Through Crack Under Extension and Bending",

International Journal of Fracture Mechanics, Vol. 20, 1982, pp.
33-46.

Hartranft, R. J., "Improved Approximate Theories of the Bending
and Extension of Flat Plates", Plates and Shells With Cracks”,
Sih, G. C., ed., Noordhoff International Publishing, Leyden, The
Netherlands, 1977, pp. 45-83.

274




13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Sih, G. C., "A review of the Three-Dimensional Stress Problem for
a Cracked Plate", International Journal of Fracture Mechanics,
Vol. 7, 1971, pp. 39-61.

Wang, N. M., “Twistihg of an Elastic Plate Containing a Crack®,
International Journal of Fracture Mechanics, Vol. 6, 1970, pp.
367-378.

Delale, F. and Erdogan, F., "The Effect of Transverse Shear in a
Cracked Plate Under Skew-Symmetric Loading", ASME Journal of
Applied Mechanics, Vol. 46, 1979, pp. 618-624.

Folias, E. S., "The Stresses in a Cracked Spherical Shell®,
Journal of Mathematics and Physics, Vol. 44, 1965, pp. 165-176.

Folias, E. S., "A Finite Line Crack in a Pressurized Spherical
Shell®, International Journal of Fracture Mechanics, Vol. 1,
1965, pp. 20-46.

Folias, E. S., "An Axial Crack in a Pressurized Cylindrical
Shell", International Journal of Fracture Mechanics, Vol. 1,
1965, pp. 104-113.

Folias, E. S., "A Circumferential Crack in a Pressurized
Cylindrical Shell", International Journal of Fracture Mechanics,
Vol. 3, 1967, pp. 1-11.

Sanders, J. L., Jr., "Circumferential Through-Cracks in
Cylindrical Shells Under Tension", ASME Journal of Applied
Mechanics, Vol. 49, 1982, pp. 103-221.

Sanders, J. L., Jr., "Circumferential Through-Cracks in a
Cylindrical Shell Under Combined Bending and Tension", ASME
Journal of Applied Mechanics, Vol. 50, 1983, pp. 221.

Erdogan, F. and Kibler, J. J., "Cylindrical and Spherical Shells
With Cracks", International Journal of Fracture Mechanics, Vol.
5, 1969, pp. 229-237.

Copley, L. G. and Sanders, J. L. Jr., "Longitudinal Crack in a
Cylindrical Shell Under Internal Pressure®", International Journal
of Fracture Mechanics, Vol. 5, 1969, pp. 117-131.

Sih, G. C. and Hagendorf, H. C., "A New Theory of Spherical
Shells With Cracks", Thin-Shell Structures: Theory, Experiment

and Design, Fung, Y. C. and Sechler, E. E., eds., Prentice Hall,
1974. :

Sih, G. C. and Hagendorf, H. C., "On Cracks in Shells With Shear
Deformation", Plates and Shells With Cracks", Sih, G. C., ed.,
Noordhoff International Publishing, Leyden, The Netherlands,
1977, pp. 201-229.

275



26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Naghdi, P. M., "Note on the Equations of Shallow Elastic Shells",
Quarterly of Applied Mathematics, Vol. 14, 1956, pp. 331-333.

Krenk, S., "Influence of Transverse Shear on an Axial Crack in a
Cylindrical Shell", International Journal of Fracture Mechanics,
Vol. 14, 1978, pp. 123-143.

Delale, F. and Erdogan, F., "Transverse Shear Effect in a
Circunferentially Cracked Cylindrical Shell®, GQuarterly of
Applied Mathematics, Vol. 37, 1979, pp. 239-257.

Delale, F. "Cracked Shells Under Skew-Symmetric Loading", NASA
Project Report, Lehigh University, NGR 39-007-011, July 1981.

Yahsi, 0. S. and Erdogan, F. E., "A Cylindrical Shell With an
Arbitrarily Oriented Crack", International Journal of Solids and
Structures, Vol. 19, 1983, pp.955-972.

Barsoum, R. S., Loomis, R. W. and Stewart, B. D., "Analysis of
Through Cracks in Cylindrical Shells by the Quarter-Point
Elements®, International Journal of Fracture Mechanics, Vol. 15,
1979, pp. 259-280.

Ehlers, R., "Stress Intensity Factors and Crack Opening Areas For
Axial Through Cracks in Hollow Cylinders Under Internal Pressure
Loading", Engineering Fracture Mechanics, Vol. 25, 1986, pp. 63-
77.

Newman, J. C., Jr. and Raju, I. S., "Analysis of Surface Cracks
in Finite Plates Under Tension or Bending Loads", NASA Technical
Paper 1578, 1979.

Raju, I. S. and Newman, J. C., Jr., "Stress-Intensity Factors for
Internal and External Surface Cracks in Cylindrical Vessels",
Journal of Pressure Vessel Technology, Vol. 104, 1982, pp. 293-
298.

Shah, R. C. and Kobayashi, A. S., "On the Surface Flaw Problem" ,
The Surface Crack: Physical Problems and Computational Solutionms,
Swedlow, J. L., ed., ASME New York, 1972, pp.79-124.

Smith, F. W. and Sorensen, D. R., "The Semi-Elliptical Surface
Crack - A Solution by the Alternating Method", International
Journal of Fracture Mechanics, Vol. 12, 1976, pp. 47-57.

Heliot, J., Labbens, R. C. and Pellisier-Tanon, A., "Semi
Elliptical Cracks in a Cylinder Subjected to Stress Gradients",
Fracture Mechanics, ASTM, STP 677, 1979, pp. 341-364.

Nishioka, T. and Atluri, S. N., "Analysis of Surface Flaw in
Pressure Vessels by a New 3-Dimensional Alternating Method",

276




39.

40.

41.

42.

43.

44.

46.

47.

48.

49.

Journal of Pressure Vessel Technology, Vol. 104, 1982, pp. 299-
307.

Nishioka, T. and Atluri, S. N., "Analytical Solution for Embedded
Elliptical Cracks, and Finite Element Alternating Method for
Elliptical Surface Cracks, Subjected to Arbitrary Loadings",
Engineering Fracture Mechanics, Vol. 17, 1982, pp. 247-268.

0’Donoghue, P. E., Nishioka, T. and Atluri, S. N., "Analysis of
Interaction Behavior of Surface Flaws in Pressure Vessels",
Journal of Pressure Vessel Technology, Vol. 108, 1986, pp. 24-32.

Mattheck, C., Morawietz, P. and Munz, D., "Stress Intensity
Factor at the Surface and at the Deepest Point of a Semi-
Elliptical Surface Crack in Plates Under Stress Gradients",

International Journal of Fracture Mechanics, Vol. 23, 1983, pp.

201-212.

Grebner, H. and Strathmeier, U., "Stress Intensity Factors for
Circumferential Semi-elliptical Surface Cracks in a Pipe Under
Thermal Loading®, Engineering Fracture Mechanics, Vol. 22, 1985,
pp. 1-7. :

Isida, M., Noguchi, H. and Yoshida, T, "Temsion and Bending of
Finite Thickness Plates With a Semi-Elliptical Surface Crack",
International Journal of Fracture Mechanics, Vol. 26, 1984, pp.
157-188.

Swedlow, J. L., ed., The Surface Crack: Physical Problems and
Computational Solutions, ASME New York, 1872.

Newman, J. C., Jr., FA Review and Assessment of the Stress-
Intensity Factors for Surface Cracks®, NASA Technical Memorandum
78805, 1978. :

Scott, P. M. and Thorpe, T. W., "A Critical Review of Crack Tip
Stress Intensity Factors For Semi-elliptic Cracks", Fatigue of
Engineering Materials and Structures, Vol. 4, 1981, pp. 291-309.

Murakami, Y., "Analysis of Stress Intensity Factors of Modes I,II
and III for Inclined Surface Cracks of Arbitrary Shape',
Engineering Fracture Mechanics, Vol. 22, 1985, pp. 101-114.

Delale, F. and Erdogan, F., "Line-Spring Model for Surface Cracks
in a Reissner Plate", International Journal of Engineering
Science, Vol. 19, 1981, pp. 1331-1340.

Nakamura, H., Okamoto, A. and Kamichika, R., "Analysis of
Surface Cracks in Weld Pipe - An Application of Line Spring
Model®, Transactions of the 7th International Conference on
SMIRT, Vol. G, F7/5, 1983.

277



50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

Parks, D. M., "The Inelastic Line-Spring: Estimates of Elastic-
Plastic Fracture Mechanics Parameters for Surface-Cracked Plates
and Shells", Journal of Pressure Vessel Technology, Vol. 103,
1981, pp. 246-254.

Miyoshi, T., Shiratori, M. and Yoshida, Y., "Analysis of J-
Integral and Crack Growth for Surface Cracks by Line Spring
Method", Journal of Pressure Vessel Technology, Vol. 108, 1986,
pp. 305-311.

Miyazaki, N. and Kaneko, H., "On the Combination of the Boundary
Element Method and the Line-Spring Model", International Journal
of Fracture Mechanics, Vol. 31, 1986, pp. R3-R10.

Yang, C. Y., "Line Spring Method of Stress Intemnsity Factor
Determination for Surface Cracks in Plates Under Arbitrary In-
Plane Stresses", Presented at ASTM 19th National Symposium on
Fracture Mechanics, San Antonio, Texas, June 30- July 2, 1986.

Theocaris, P. S. and Wu, D. L., "A Closed-Form Solution to the
Equivalent Through-Crack Model for Surface Cracks", Acta
Mechanica, Vol. 58, 1985, pp. 153-173.

Theocaris, P. S. and Wu, D. L., "The Equivalent Through-Crack
Model for the Surface Part-Through Crack", Acta Mechanica, Vol.
59, 1986, pp. 157-181.

Boduroglu, H. and Erdogan, F., "Internal and Edge Cracks in a
Plate of Finite Width Under Bending", ASME Journal of Applied
Mechanics, Vol. 50, 1983, pp. 621-629.

Erdogan, F. and Boduroglu, H., "Surface Cracks in a Plate of
Finite Width Under Extension or Bending", Theoretical and Applied
Fracture Mechanics, Vol. 2, 1984, pp. 197-216.

Erdogan, F. and Axsel, B., "Line-Spring Model and its
Applications to Part-Through Crack Problems in Plates and
Shells", NASA Project Report, Lehigh University, NGR 39-007-011,
June 1986. '

Wu, B. H. and Erdogan, F., "The Surface Crack Problem in an
Orthotropic Plate Under Bending and Tension", NASA Project
Report, Lehigh University, NGR 39-007-011, November 1986.

Delale, F. and Erdogan F., "Application of the Line-Spring Model
to a Cylindrical Shell Containing a Circumferential or Axial
Part-Through Crack", ASME Journal of Applied Mechanics, Vol. 49,
1982, pp. 97-102.

Gross, B. and Srawley, J. E., "Stress Intensity Factors for
Single Edge Notch Specimens in Bending or Combined Bending and

278




62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

Tension by Boundary Collocation of a Stress Function", NASA
Technical Note D-2603, 1965.

Tada, H., Paris, P. C. and Irwin, G. R., The Stress Analysis of
Cracks Handbook, Del Research Corporation, Hellertown, Pa., 1973.

Kaya, A. C. and Erdogan, F., "Stress Intensity Factors and COD in
an  Orthotropic  Strip", International Journal of Fracture
Mechanics, Vol. 16, 1980, pp. 171-190.

Kaya, A. C. and Erdogan, F., "On the Solution of Integral
Equations with Strongly Singular Kernels," (to appear in the
Quarterly of Applied Mathematics). =~ :

Benthem, J. P. and Koiter, W. T., "Asymptotid Approximations to
Crack Problems", Methods of Analysis and Solutions of Crack
Problems, Sih, G.” C., ed., Noordhoif International Publishing,

- Leyden, The Netherlands, 1973.

Hadamard, J., ®Lectures on Cauchy’s Problem in Linear Partial
Differential Equations", Yale University Press, 1923.

Kaya, A. C., "Applications of ‘Integral Equations with Strong
Singularities in Fracture Mechanics", Ph.D. Dissertation, Lehigh
University, 1984.

Irwin, G. R., "Analysis of Stresses and Strainms Near‘the End of a
Crack Traversing a Plate", ASME Journal of Applied Mechanics,
Vol. 24, 1957, pp. 361-364.

Irwin, G. R., "Fracture Mechanics", Strucﬁural Mechanics,
Goodier, J. N. and Boff, N. J., eds., Pergamon Press, New York,
1960, pp. 557-591.

Erdogan, F., "Stress Intensity Factors", ASME Journal of Applied
Mechanics, Vol. 50, 1983, pp. 992-1002.

Ezzat, H. A., "Experimental Verification of the Simplified Line-
Spring Model"; International Journal of Fracture Mechanics, Vol.

28, 1985, pp. 139-150.

Sih, G. C., Handbook of Stress Intensity Factors, Institute of

Fracture and Solid Mechanics, Lehigh University, 1973, sec.
1.2.1-5,7.

Eraogan, F. and Ratwani, M., "A Note on the Interference of Two
Collinear Cracks in a Cylindrical Shell", International Journal
of Fracture Mechanics, Vol. 10, 1974, pp. 463-465.

Delale, F. and Erdogan F., "Stress Intensity Factors in a Hollow
Cylinder Containing A Radial Crack", International Journal of
Fracture Mechanics, Vol. 20, 1982, pPp. 251-265.

279



75.

76.
77.
78.
79.
- 80.

81.

82.

83.

84.
85.
86.

87.

Nied, H. F. and Erdogan, F., "The Elasticity Problem for a Thick-
Walled Cylinder Containing a Circumferential Crack",
International Journal of Fracture Mechanics, Vol. 22, 1983, pp.
277-301.

Erdogan, F., "Approximate Solutions of Systems of Singular
Integral Equations", Journal of Applied Mathematics, Vol. 17,
1969, pp. 1041-1059.

Erdogan, F., "Mixed Boundary-Value Problems in Mechanics",
Mechanics Today, Nemat-Nasser, S., ed., Vol. 4, Pergamon Press,
Oxford, 1978, pp.1-86.

Muskhelishvili, I. N., Singular Integral Equations, Noprdhoff

- International Publishing, Leyden, The Netherlands, 1953.

Kaya, A. C., "On the Solution of Integral Equations with a
Generalized Cauchy Kernel", (to appear in the Quarterly of
Applied Mathematics). ’

Sih, G. C., "Stress Distribution Near Internal Crack Tips for
Longitudinal Shear Problems", ASME Journal of Applied Mechanics,
Vol. 32, 1965, pp. 51-58.

Sneddon, I. N., "The Distribution of Stress in the Neighborhood
of a Crack in an Elastic Solid", Proceedings of the Royal Society
of London, Series A, 187, 1946, pp. 229-260.

Kassir, M. K. and Sih, €. C., "Three-Dimensional Stress
Distribution Around an Elliptical Crack Under Arbitrary
Loadings®™, ASME Journal of Applied Mechanics, Vol. 33, 1966, pp.
601-611.

Hartranft, R. J. and Sih, G. C., "Stress Singularity for a Crack
With an  Arbitrarily Curved Front", Engineering Fracture
Mechanics, Vol. 9, 1977, pp. 705-719.

Timoshenko, S. and Woinowsky-Krieger, S., Theory of Plates and
Shells, Mcgraw-Hill Boek Company, New York, 1959, pp. 165-171.

Benthem, J. P., " "State of Stress at the Vertex of a Quarter-
Infinite Crack in a Half-Space®, Vol. 13, 1977, pp. 479-492.

Abramowitz, M. and Stegun, I. A., Handbook of Mathematical
Functions, Dover Publications, 1965.

Gradshteyn, I. 8. and Ryzhik, I. M., Table of Integrals, Series,
and Products, Academic Press, 1965.

280




APPENDIX A

Non-Dimensional Variables and Useful Formulae

A.1 Non-Dimensional Plate and Shell Quantities

If z

X = xl/h , Y = x2/h , %= x3/h ,

R AR ALY R LT RR LV

<
[}
o=
|

it

y Yy = u2D/h ! ﬂy

g9; = aiD/E » Q= E/E ’

Nxx'= Nll/(hE) ’ Nyy = sz/(hE) ’ ny = N12/(hE) ’

2 2 2
uxx = Mll/(h E) , Mxy = Mlzl(h E) , uyy = u22/(h E) ,

= 12(1+0)V}/(5B) , V, = 12(1+)V,/(ShE) ,
a - 1'1 = 12(1-v2) , K= 3?1%37 ,

4 4 4 4 2 4

xp = 24/R)) Xy = M(b/R) , 2], = % (h/R12)

.2 Some Useful Properties of Modified Bessel Functions

K (@) = £ [Ky() - Ky(a)]
d -
Exda=-qu)=%[5u>-%uﬂ,

- K, (@) - 2K) = Z [Ky(a) - Ky(m)] - 2 Ky (a).
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(A.1)

(A.2)

(A.3)

(A.4)
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For small z,

Ky(z) ~ -1n(2/2) - 17, - (2/2)21n(2/2) + 0(z%) , (A.10)
Ky(z) ~ 2/2° -1/2 -1/2(2/2)21n(2/2) - 1/2(2/2)%(1,+5/4)

- 1/6(z/2)%1n(z/2) + 0(st) , (A.11)
where Euler’s constant, 7, = .57721566480153. . .. |

A.3 Chebychev Polynomials

0f the first kind: Tn(x) = cosnf , 8 = cos—lx , (A.12)
0f the second kind: U (x) = §i§§§§llg , 0 = cos Ix . (A.13)

Some expressions needed to integrate
+1 .
I (r—s)lUj(r)Jl-r2 lnlr-sl dr , i=1,2,3 , (A.14)
-1 A ,

are,

U (r) = l [Uj+1(r) R Uj_l(r)] ,

|

2
2, () [Uj+2(r) v 20, (r) +Auj_2(r)] ,

00 |=

3
U, () ,[Uj+3(r) S ANORE SO uj_3(r)] . (A.15)
An important relation between Chebychev Polynomials of the first and

second kinds when using the line-spring model with displacement

derivatives as the unknowns is,

T (x)
I(ll_z);iz/% =1 1?2y (x) + constant . (A.16)
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The following integrals are useful for calculating stresses ahead of

the crack tip,

2.1/2
+1 U (¢)(1-¢t
+1 T (t) 2 1/2 n
n dp = - =1 1y sy A.18
I_l VT )72 x ;s
2)1/2

I+1 U_(t) (1-¢
1 (x-t)2

_(n+1)[x~(x2-1)1/2]n[1— 2;5%13175] ’

Ixl >1 . | (A.19)

A.4 Finite-Part, Cauchy Principal Value, and Log Intggrals

Except for the log integrals, these expressions are copied from {67].

1 (1-6)%(st)Pp (@) 4
)( e L t_])‘ = ® dt = 7cot(ar) (l—x)a(1+x)ppn(a:p) (x) -

-1

a+p ofs _
RO s vy 10, 0,
(@>-1, p>-1, a#0,1,2...) , (A.20)
+1 Pn(t)
f—l t-x dt = —2qn(X) ’ | (A.21)
+1 Tn(t)
f_l -5 ) dt =10 _,(x) (A.22)
1 U_(8) (1-t%) /2
f—l t-x = ‘1Tn+1(x) ’ - (A723)
+1 P _(t) _2(n+1)
§-1 (:-x)2 a = 1-:2 9,00 - G,y | (A.24)
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§+1 Tn(t)
-1 (1—t2)1/2(t—x)

[ -n+l o ( ) + n+1 n-z(x) ]

(A.25)
1/2

§+l U (t)(l -t )

dt = -r(a+1)U_(x) , (A.26)
-1 (t—x)

where Pn(a’p)(t) are Jacobi Polynomials, F(a,b;c;z) are Hypergeometfié
functions, P (t) are Lagendre Polynomials, Q (t) are Lagendre
Polynomials of the second kind, and I'(a) is the gamma function.

Some integrals that can be used with Eqn. B 27 are:

+1 '
-15%; d=t [1X], (A.27)
§+l L T (A.28)
1 (t-x)2 -x  1l+x
+1
} 1}2 dt=0 , (A.29)
1 (16912 (x)
+1
{ s dt =0 (A.30)
1 1-t3 2 (e
+1
{ L—)—l £) " 4t = omx (A.31)
+1
{ 11;1L)——— dt = -x (A.32)
-1 (t- x)
+1 o . 1/2 —
)(-1 A8 o = 27| 1 -1 |52 1) ] . (A.33)
+1
11_21___ _ 1. 1[2
j(_l - =T 1|Ene |, (A.34)
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+1
1 _ 1n(B)
. dt = , A.35
J(-1 (1-t) /2 (¢-x) = (-3%)

+1
1 22 1-1 1 l 2
§-1 (1_t)1/2(t_x)2 dt = 1-x [ 1+x T 4 i1-x In(B) ] ’ (A.36)

7
where

Ir—a
[S1K)
)

B = : - . : (A.37)
2 ‘

[y
"

There are similar formulas for power series.

+1 . j+2
1 j ltl'l(l-tz)l/zlnlt-yl dt = E{; ay< !, (A.38)
1,5-1 1/2 41 .
1 f t (1 172 . ;Z% bkyk 1 (A.39)
+1, j3-1 1/2 i ~
1Pt ) =3 1, (A.40)
1 (t-y)2 k=1
 where
(Y
bk = Tha3) ? k=1,2,...,j+1, for j = 1,2,3,... ,
ofr r(ik:) and -k odd,
bk =0 , j-k even , (A.41)
o =kb,, » k=1,23,..,i , (A.42)
S
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k-1

17 1(5-3)! 1 { 5 (—li v
T1(3- iv Tl
2 (15 (i) ’
a, = -(1/4 + 1/2 1n(2)) , j=1

And for the weight in the denominator,

+1 s n-1 k
{ 2.1/2 dt = 2 dx
-1 (1-t%) /% (t-x) k=0
dk =0 , n-k even,:
-k
o et
d, = I?"———iigfl. , n-k odd |,
I-[n— + ]
2
1 n n-2
1t t k
= dt = e, X
v §-1 (1-t% 12 (4-x)2 o <
e = 0 , n-kodd ,
r[n_k_l]
e = I;q————g—-— (k+1) , n-k even
R
2

- 1a(2) }
i =3,5,7,..

For integration of logs with Chebychev Polynomials [76]

(A.43)

(A.44)

(A.45)

(A.46)

(A.47)

(with

corrections) of the second kind that are typical when using the

strongly singular formulation,

+1
f uj(r)]1-r2 lalr-sl dr = Vi(s) , -1 ¢
-1

where
T.(s) Ty o(s)
=¥ |1 J+2 .
Vi) =3 [ i T g2 ] » 3120
=3 [-s2 +1/2 + 1n2] ,j=0
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APPENDIX B

Finite-part Integrals

Singular integral equations result naturally from the formulation
of two-dimensional crack problems in mechanics when the crack opening
displacement derivative is used as the unknown. The theory is well
established due principally to the work of Muskhelishvili [78]. 1If
the displacement is used as the unknown, the resulting singular
integral equation takes on a new form and is referred to as strongly
singular. To illustrate the differences considér the two—dimensional,
ha1f¥space crack problem of Fig. B.1 with boundary conditions given by
Eqns. B.1-4. This simple geometry produceé all of the important

mathematical features of the geometries studied in this dissertation.

[ R

0,y @) =0 e

7,x(07) = 0 8.2)

0;; is bounded at infinity. (B.3)

vix,y) =v(y) =0, x<a,x2b

ay(x,O) = -p(x) , a<x<b. (B.4)

Figure B.1

The resulting integral equation is
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b b
J(%%l dt + J $(t)K(x,t) dt = - '—(é—;"l p(x) , acx<h , (B.5)
a a

where the non-singular Fredholm kernel,

2
K(x,t) - -1 + 6x 4X

t+x (t+x)2 (t+x)3 ’

(B.6)

and ¢(t) is the unknown derivative of the crack opening displacement
v(t), p is the shear modulus of the material, and £ is defined in

terms of Poisson’s ratio v for both

i
plane stress: E=170 0
and for plane strain: £ = 3-4v . _ (B.7)

The first integral in Eqn. B.5 is singular and is interpreted in
the Cauchy principal value sense, specifiéd as such by a line through
the integral sign. One way to define a Cauchy principal value

integral is as follows,

e+0

b X-€ b
[88) ¢ - 1im [ [ 4 4 , (40D 4 } (B.8)
a a X+€

By using the standard interpretation of an integral as the area under
a curve, note that individually the integrals on the right hand side
of Eqn. B.8 do not exist in the limit, but when added together the
"infinite areas" will be of opposite sign and will cancel giving a
finite result. When the problem in Fig. B.1 is formulated by using
the displacement v(t) as the unknown instead of the derivative ¢(t),

the resulting integral equation is found to.be,
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;—”-(: el I o[ B | g - - o8 g

a<x<b , (B.9)
where the first integral no longer exists in the Cauchy principal
value sense and requires a special interpretation. Throughout the
dissertation these integrals are identified by a-double dash through
the integral sign.

Consider a direct integration by parts of the ihtegrals in Eqn.

B.5.
b b
[ #@Kx,0) b = vk o] - [ v Blexd ] e, @.10)
a
a a
b
v(t t
[ o8 4 ¢ E{;ll j zif—l— dt . (B.11)

Here again ‘the same "strongly singular® integral appears. For
Egn. B.11 to be an equality, this integral must be finite just as it

must be in Eqn. B.9, so we write,

b
fﬁ?d“l—f?l )((—‘:Q—dt. (B.12)

Note that Eqn. B.9 is obtained if Eqns. B.10,12 are substituted into
Eqn. B.5. The integrated terms cancel for either an internal crack
(0<a<b) where

v(a) = v(b) =0, (B.13)

or for an edge crack (0=a, O<b) where
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v [ 2+ k0 ] =0, v(b)=0 . | (B.14)

The fact that a special interpretation of the strongly singular
integral in Eqns. B.9,12 is necessary apparently reveals that a
"mistake” has been made in the derivation of each equation. This
mistake in Eqn. B.11 is corrected when Eqn. B.8 is wused when

integrating by parts as follows,

’ X-€
19 - (8] 205 )

b
IO RO
[ Z—x |x+€ x{e (I ) dt ]} !

. b
(. [ ]t ]
a

b
o[ e f —"-(ﬂ-dt]}.

(B.15)
X+€ (é )

From Egqns. B.12 and B.15 we obtain a result similar to Eqn. B.8 but

for strongly singular integrals:

> (tx) €+0

_xigl_ dt = lim {[ v(f;e) I (v!t) dt ]
t-

[ )

(B.16)
goe (07

With this definition Egns. B.9,12 are correct. Consider for example

v(t)=1.
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b . . - b
e WA BELD e
a

(t—x) X+€
_ limf[-1 1,1 ], [ 1,1
'e*o{le+e+a—x]+[e b—x+e]}’ (B.18)
1 1 A
=35 T bx (B.19)

Note that this would be the result obtained if Eqn. B.17 is integfated
directly as though the singularity were not present.

Integrals of this type were studied by Hadamard in 1923 [66] and
were referred to as finite—part integrals, a name which describes Eqn.
B.16 where the infinite part is subtracted out. For more information
on finite-part integrals and their use for :problems of the type
studied in this dissertation see Kaya [67].

To derive a property that is more useful than eqn B.16 for
evaluating finite-part integrals, differentiate Eqn. B.8 with respect

to x as follows.

b X-€ ' b

0 [ v(t) __0 lim [ [ ¥(t) v(t)

Ox J t-x dt = Ox e+0 { I t-x dt + I t-x dt } ) (B.20)
a a X+E

Next differentiate on the right before the limit is taken and before

integration,

2. By ]2 a)

ox . t-x €+0 1 (t-x)
b
+ [ —L(X_;E)_ +x{e (—:Ei—;—i dt ]} . (B.21)
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From Eqn. B.16 we conclude,

b
j( ——(—)—" L) gt = ag !-EQ- dt . (B.22)
o (t- x)?

a

By expanding v(t) near the point t=x, another method for the

evaluation of finite-partvintegrals is obtained,

b
j( vgt) dt = j(v(t) (v(x)+(t-x)v’ (X))+(V(X)+(t x)v'(x)) g4
L (b x)2 o (t-x)2 - (B.23)
b B
- J V(t)-V(X)—(;—X)v (x) 4t v(x))( 5 dt
a (t-x) (t- x)
. v’(x)J( L g, . (B.24)
where
s _dv
vi(x) = & (B.25)
If
v(t) = f(t)w(t) , (B.26)
b
j( (t)w(t) gt = [ £ =f(x)- (t—X)f’(X) w(t)dt + f(x)% _L)_W t) 4
(t-X) a (t- ) . (- x)
b
22 (0f 8L g (B.27)
a

See Appendix A for finite-part and Cauchy principal value integrals

with various weight functions and with some commonly used forms of

£(t).
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APPENDIX C

The Compliance Functions

As indicated in chapter two, the mixed-mode line-spring model
requires stress intensity factor solutions of the edge cracked strip
for gach of the five loadings shown in Fig. 2.3. Three #eparate two-
dimensional problems must be solved to obtain these results. The
tension and bendihg solutions come from symmetric (mode 1) loading,
out-of-plane shear results come from skew-symmetric (mode 2) lbading,
and the anti—blane (ﬁode 3) results are obtained from twisting and
from in-plane shear 'loéding. Note that in-plﬁne for a plate

corresponds to out-of-plane for plane strain and vice versa.

C.1 Governing equations for in-plane loading.

The governing equations for the mode 1 and 2 cases are from plane
elasticity where all field quantities are independent of g.

Equilibrium of the solid requires,

aaxx arx
a—x' + —lay =0, (CI)
arx o0
-—Xax + —-ﬂay =0 . (c.2)

For plane strain, Hooke’s law relates stresses to strains in terms of
the material constants p are v which are respectively the shear

modulus and Poisson’s ratio,

= 28 [(1-v)e, + ve ], (C.3)
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2
ayy = T:% [(l—x/)ey + VEx] , (C.4)

Txy = F7xy . (C.5)

The plane stress solution can be obtained by replacing v by v/(1+v).
The strain-displacement relations for linear elasticity are,

_ du dv Ou

- - Ou dv ' '

€x " 3x ’ ey T oy ? 7xy 9y Ox ’ (C.6)

where u and v are the x and y components of displacement respectively.
If the relations in Eqn. C.6 are substituted into Egns. C.3-5 and

if the resulting expressions are then substituted into Egns. C.1,2,

Navier’s equations for the displacements are obtained:

2 1 3[du , Bv] _
Vs 1-2v axldx " oyl T 0, (€.7)
2 ,_1 3fdu  dv] _
VY 10 By ax"ay]‘°' (.8)

The geometry of the cracked strip and the method of superposition
are shown in Fig. C.1. Any field quantity on the left of this figure,
say f(x,y), is given by,

f(x,y) = fl(x;Y) . fz(xy}')" (c.9)

where the subscripts correspond to the geometries on the right. Eqn.
C.9 is used for all relations including the boundary conditions. The

preceeding information will be used for mode 1 and for mode 2.

C.1.1 Mode 1.
The boundary conditions for the symmetric problem are:

Ty (0 =0, (C.10)
Txy(o’Y) =0,
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|
(=

ey (B:Y) =
axx(o:}') =0,
axx(h,Y) =0, (C.11)

v(x,0) =0, x<a , b>x ,

oyy -p(x) , a<x<b . , (c.12)

To solve problem 1 of Fig. C.1 we introduce the exponential

Fourier transform defined as follows, ”
1 (" -3
tx,y) =L [ Fpe P ap . (.13)
—0
+00 .
F.y) = | 1(x,y)e* ax (.14)
—~®

When the Fourier transforms of Eqns. C.7,8 are taken, the following

ordinary differential equations result,

2_ _ -
9‘% - e 1 ; [ P+ 1P ] ; (C.15)
3y i dy

2- . - 2= :
&y g% [ ] . (C.16)
oy 0y Oy

These equations are solved for u and v, inverted according to C.13 and

then substituted into Egns. C.3-5 to obtain,

1y (6y) = 5 Ji:{[ ALD) + yAy(p) |1
[ 1300 + way@ |0} % ap (C.17)

neen =5 [ 4o - G ool

295



[A3(ﬂ) - (T%T - y)A4(p)]e*’P'Y} o ~ifx df , (C.18)
T 7) = 32 | {[ 2, () + 0 G - 2p)] Y

245 - A0 G5t + 20 1PV} P g .19
alyy(x{Y) = ; {[2A (B + A (p)(};f . 2,)] 1Py

(24500 + 4, (35 + 2] P} P ap (¢.20)

+00

Ty () = 2 ,{[-2'P"1<ﬂ) ¢ AP (1-s-21p1y)] &PV L

[21810,(9) + AP -rszipiy)] P} P gp (c.21)
where £ = 3-4v.
For bounded behavior at infinity

A(B) = Ay () =0 . (c.22)

!

For problem 2 of Fig. C.1 there is symmetry which allows the

following Fourier sine and cosine transforms to be used,

u,(x,a) = , dy , c.23

p0) = [ uy(x,)cosay dy (c.23)

2(x,y) == J 2(x a)cosay da , ‘ (C.24)
0

;2(x,a) = Iovz(x,y)sinay dy , (C.25)

( y¥) = 2 IO 2(x a)sinay da . (C.26)
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After performing an identical analysis as was done with problem 1, we

obtain,
u,(x,y) = % J:{[ Bl(a) + Bz(a)(i + x) ]e—ax -

4[ B3(a)ve.B4(a)(§ - x) ]é“x}cosay.da , (c.27)

()

v, (x,y) = 2 j:{[nl(a) + xBy(a) e +

[By(@) + xB,(a)]e™)sinay da , (c.28)
o) = 2 [[o{[am,@ + By & + 20] &%

[28,(0) + B, (@) ( 25 + 20)] ™]cosay da , .~ (0.29)

”2yy(x»Y) = _g$ f:a{[—ZBl(a) + B2(a)(§iﬁ _ 2x)] e X L

[—2B3(é) - B4(a)(§iﬁ + 2x)] eax}cosay de , (€.30)

T2xy(x,y) = gg J:{[-ZaBl(a) + Bz(a)(l—n—2ax)] e,

|20B,(a) + B4(a)(1—n+2ax)] e®™}sinay da ; (c.31)

Now the boundary conditions, Eqns. C.10-12 are applied making use of
Eqn. C.9. First Egn. C.10 relates Al(p) to Az(ﬂ) as foliows,

1- A
A B = g5 AP - (€.32)
Now introduce a new unknown,
v(x) = v(x,0) ,

and express A2(p) in terms of it.
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1+K —®

. +00 . . b .
A0 = B2 [y () Pray = B (7 (1) Pqe . (C.33)
e

The unknowns in the problem are v(x) and B, (a), i=1,...,4. Egns. C.11

produce a linear system of four equations that determine Bi(a) as

follows, _
4 L7,
By = 2 g, (C.34)
i : A
=1
where ‘
A= e20h | (4922 4 9) 4 720D (C.35)
Ty = -1 o [0’ - 20h(s-1) + (-D)]
T1g = eoh [2ahx + £ - 1] + e-ab [-2¢h - & + 1] ,
Tyg = (1) e?® + [40%h% + 20h(ke1) + (ke1)] ,
T4 = eah [-2ahx + & + 1] + e—ah [-2ah - & - 1] ,
_ 2ah 2
To = 20" + (4a”h - 2a) ,
Tog = o2h [—4a2h - 2a] + 20¢2h ,
To3 = 20e2% _ (4a2h + 2a) ,
Tog = ooh [4a2h - 2a] + 20¢™ D )

Tgy = [-4a%hZ + 20h(x-1) + (-1)] - e 2%B(x-1)
_ ah -ah
Tap = ¢ [26h - (1)) + ¢ B [-22hk + (s-1)] ,

= ['402h2 + 2ah(x+1) - (x+1)] + (&+1)e-2ah

)
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Taq = ¢ [-20h + (s+1)] - ¢ [20hk + (5+1)] ,

T4 = [4a2h + 2a] - 20e2eh ,
T40 = —2a_eah + [-4a2h + 2a) e-ah R
Vya = [4a2h _ 2a] + 20e”20h
43 !
Tyq = 227 . [-4a2h - 2a] o ab , ’ ~ (C.36)
and
G b (1—&t)e’“tv(t) dt
172018 dat,
I 1 (P [1-a(b-t)]e 2By (e) dt
2 7 2(1+k) a !
G b (2-at)e_atv(t) dt
37 2(1+0) J, ’
b ,

- 1 _ —a(ht)1e-2(h-t)

T = 5% ja [2-a(h-t)]e v(t) dt . (C.37)

The mixed boundary condition gives a singular integral equation for

v(x), a<x<b.

b b
1 -7(1+x
v(t) + K. (x,t)t dt + Ko, (x,t)v(t) dt = p(x) ,
frofty e reem} e | xy G
where
1 12xt 1 12 (h-x) (h-t) -
K = - + - + (0.39)
C w? @t @xt)? (2hx-t)?
and
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KIl(x,t) = J:[ Sl(x,t,a) + Sl(h-x,h-t,a)

Sl(x,t,a) =

e—(x+t)a

A

+ 8,(x,6,a) + Sy(h-x,b-t,0) | da ,

{e-zah[—2a3xt+a2(3x+3t)-5a]+8a5h2xt

-12a4h2(x+t)+a3[2hx+i8h2+2xt+2ht]+a2[-3x—3t-6h]+5a} s

S2(x)t’a) =

ae (x-t)a

A

{e-zah[-a(x-t)—3]+a3[—4h2t+4hxt]

+a2[sh2-shx+sht]+a[x-t-loh]+3} ,

A= ezah - (402h2 +2) + e

For an edge crack a=0.

p(x) = 01 ’

and for bending,

-2ah

The loading for tension is,

- 23]

C.1.2 Mode 2.

The boundary

ayy(x,O)
Ty (0s¥)
Ty (B:¥)

axx(o)Y)

tl

axx(h)Y) =

0

0

conditions for the skew-symmetric case are,

’
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u(x,0) =0, x<a , byx ,

T*y = -p(x) , a<x<b .

The symmetry of problem 2 in Fig. C.1 for

conditions suggests the following Fourier

displacements,
Ez(x:a) = f;uz(x,Y)Sinay dy ,
2 ("=
u2(x,y) = ;Vjou2(x,a)sinay da ,
;2(1(,(1) = r;v2(x’y) cosay dy ,
2 (=
v2(x,y) = Iov2(x,a)cosay da .

(C.48)

the above boundary

transforms

When these expressions are used to solve C.7,8 the result is,

uy(x,y) = % I:{'[ C,(a) + 02(0)(5 + x) ]e_ax
'[ Ca(e) - 04(0)(5 - x) ]eax}sinayrda ,
-2 -l

[Ca(a) + xC4(a)]eax}cosay de ,

O (%7) = 2 I:a{[zcl(a) v Cy(a)(L2E v 2)] & 4

[203((1) + C4(a)( -}%‘-’ + 2x)] .eax}sinay da ,
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(C.50)
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' (C.52)

(C.53)

(C.54)
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aZyy(x’y) = 2$ I:a{[‘201(a) + 02(‘1)@3"E - 2x)] e X .
[-203(0) - 04(a)(§i£ + 2x)] eax}sinay de , (C.56)
7§xy(X,Y) = 2% I:{[-2acl(a) + cz(a)(l-ﬂ—2ax)] s I

[2003(0) + 04(0)(1-&+2ax)] eax}cosay da . | (C.57)

The solution to problem 1 in the superposition of Fig. C.1 is the same

as for mode 1 (Eqns. C.17-21). Eqn. C.46 gives,

nO =R a0 - (c.58)
After defining

u(x) = u(x,0) (C.59)

as a new unknown we can express,

+00 . b .
Ay(p) = %%}% J_”u(x)elpx dx = '(—ﬂ% Iau(x)elpx d .  (C.60)

The Ci(a) are determined from Eqns. C.47 to be,
C; (1) = > -, (C.61)

where 7ij and A are the same as for mode 1 (Eqns. C.35,36) and the

Ij’s are found to be,

b
_ -1 -at
I = TR Ia ate " u(t) dt

X |
I, = 5ty ja a(h-t)]e 2By (e) at
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b
I = 5700 ja (1-at)e % (t) dt

~a(h-t)

Lo
L = 350 ja [1-a(b-t)]e u(t) dt .

(C.62)

The mixed boundary condition, Egn. C.48, gives a singular integral

equation for u(x), a<x<b.

b b
}uw{—L§+%u¢ﬂdt+jxmuﬁnu)a=’ﬂﬁﬂ
a (t-x) a

where

K. = .—1 , A2xt 1 . 12(h-x) (h-t)
C ww? et @x-t)? (@hx-t)?

and

Kpg(x,t) = j:[ S(x,t,0) + Sy(h-x,ht,a)

+ 8,(x,5,0) + S, (h-x,h-t,0) | da ,

—4a4h2(x+t)+a3[2hx+2h2+2xt+2ht]-az[x+t42h]+a} )

(t-x)a . _
ae . a {e 2ah[

S4(x,t,a) = a(t—x)+1]+a3[4h2x—4hxt]

+a2[-2h2-2hx+2ht]+a[—t+x+2h]-1} ,

A= o2t | (4922 | 9) 4 o 20h

p(x) ,

(C.63)

(C.64)

~ (C.65)

(C.66)

(C.67)

(C.68)

For an edée crack a=0. To obtain the mode 2 stress intensity factor

for parabolic shear loading we let
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p(x) = 05(2/h)*x(b-x) . | (C.69)

C.2 Anti-plane shear.

The governing equation for anti-plane shear is,

V=0, ~ (C.70)

where w is the z-component of displacement. The stresses and strains

can be written in terms of w,

- 0¥ - ,0¥

Tz = Pax Tyz = ”By ) (€c.71)
-} _ Bv

Txz = 8x ’ 7yz T oy (C.72)

All other components are zero. Again the superposition of Fig. C.1
together with Eqn. C.9 are used. The general solution for w(x,y) in

terms of the Fourier transforms of Eqns. C.13,14 and C.25,26 is,

wy) = 55 [ AP g

2 Io[Bl(a)e"’x + By(a)e™] sinay da . | (C.73)

There are three unknowns in the above equation and the following

conditions will determine them,

7,4(0¥) =0, (C.74)
7 () =0, (C.75)
7,5060) = p(x) , acx<b

¥w(x,0) = 0, x<a, x>b . (€.76)

After defining
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p(x) = _I y=0 ’ | ) (C.77)

Eqn. C.73 becomes,

+00

60 =5 [ it O i gp (c.78)
Inversion (Eqns. C.13,14) and Eqn. C.76 give,
+00 N b .
g () = [ gt ar = [ pe)elft an (C.79)
—00 a

In order to apply boundary conditions C.74.75, Eqns. C.71,73 and 79

are used to express,

b
2¢4(t)
Tkz(x,y) = 5% dt

00 R
2 [ [LaB (a)e™™ + aB (a)e™] sinay da . (C.80)
LTI 1 2
Eqns. C.74,75 give the following two inverted equations,

b
B@e ™ - By@e™ = 5 [ g0 0 -1, (¢.81)

b
-at
B,(a) - By(a) = L Ia #(6) et dt =1, , (C.82)
where the following integral has been used,

I ysinay 5 dy = x -a(b-t) (C.83)
Oy +(h t) 2

The solution is,

-Ile'“y+ I

B,(2) = —5p—2 , - (C.84)
-e +1
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-ay -2ah
—Ile + 12e

B2 (a) = —oah , ' (C.85)
-e + 1 :

where I1 and 12 are defined in Eqns. C.81,82. Next we apply the mixed

boundary condition C.76. Egns. C.71 and C.73 must be used to express

. b +00 . ’
74 60) = p(x) = 110 o JJ(t)J_;il%l- oIy (PN gp gy o

b
lim 1 -a(x+2h-t) -a(x+t) -a(-x+2h-t) -a(-x+2h+t
,.,ogjgmf; Ot e R

where

D=1-e . (C.87)

After using the following integrals,

r”-il%' 1Py (PN gy . 2ex) " (c.88)
-® y +(t-x)
[3 (et oalnaho) go - of corliile, - (¢.89)
Egqn. C.87 becomes,
b
% Ja¢(t) { 5% [cotizéﬁll - cotiléﬁll]} dt = -% p(x) . (C.90)

This kernel is equivalent to the following,

t -
iﬁ [cotﬁlégll - cot(ng)f] = t}x (Cauchy kernel)
. <:otr(3(-i-t")-I (generalized Cauchy kernel)
2h 2h
+ ;%; - §%cot£5§%ll (Fredholm kerngl) . (C.91)

This same problem formulated in a different way has been solved in
closed form (see [77]). The solution for an edge crack is,
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sin(%%) +a g(7) ‘1—k2sin2(%%)

7. (x,y) = 5= - dr ,

yz ¥) =3 Jsinz(gﬁ)fSinz %i) -a sinﬁﬁ(r—x) (C.92)
where

g0 = &(x) , | (¢.93)
and

k= (sinf) ! . | | (C.94)
The stress intensity factor is defined as,

ky = 12 [3(xa) 7, (x,0) , (C.95)

ye

so

=2 [z [ = ‘.1-1;251,,2(;—;1-,) dt "~ (C.96)

-1 s1n§E(t-1)

For in-plane shear,

g(x) = o4 > (€.97)

so

) |
- IE“ - I;% tan(B€) , €=a/h. (C.98)
43.

Because of this simple expression @y (Eqn. 2.27) can be determined in

closed form,

a,, = ??i%if In[cos(36)] . (C.99)

For twisting,

g(x) = f%é (-], (C.100)
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so

C.3 Edge Crack SIF Curve Fitting

The five solutions are listed in table C.1. In addition to the
solutions required by the line-spring model, constant out-of-plane
shear (06) is also included.

The line-spring model requires stress intensity factors at any
value of € = a/h, so a curve is fit to each solution appearing in
table C.1. For mode 1 the asymptotic analysis of Benthem and Koiter,
[65] suggests that as § approaches 1 the stress intensity factor goes

to infinity with a power of 3/2. Therefore for gl(f) and g2(§)jwe use

1 12 x
8; () = — 373 2 0.6, i=12. (C.102)
(1-¢) k=0 A
For all other cases a 1/2 power is used,
1 8 k
g; () = PSR Z C, &, i=3,4,56. (€.103)
(1-§)

Although the singular behavior for mode 2 seems to be the same as for
mode 1, (see Eqns. C.38,39 vs. 63,64), the form given in Egn. C.103
produced a better fit than did 102. For twisting and in-plane-shear
the form of 103 is correct as can be seen by Eqns. C€.98,101. The Cij
are given in tables C.2,3. These curves reproduce the number§ in
table C.1. The most difficult curves to obtain and to fit are the

mode 1 curves. The limiting values for { approaching 1 are given in
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[66] to be 1.122 and .374 for tension and for bending respectively.
The éurve given by Eqn. C.102 produces 1.1229 and .3735 which shows
both good data and a good curve fit.

For reference‘ the compliance curves that have been used in the
literature to date are listed beloﬁ. They are for tension and bending
only. | »

1. Gross énd Srawley, 1965; [61], used in Refs. [2,3].

- |
1 1 2 3 4
= ——11.99-.41¢+18.7¢“-38.48£°+53.85¢ (C.104)
0113 ll { } ’ .
k . .
1 1 2 3 4
= ——{1.99-2.47£+12.97¢°-23.17£°+24.8¢°} .  (C.105)

2. Tada, Paris, Irwin, 1973, [62], used in Refs. [50,51,53,55].

k, {_gtang§}1/2{§752+2.ozf+.37;1-sin(1e/2)1 " (.108)
—1 _ . (c.
GII;“ x 2 | cos(7€/2)

k) _ _gtan£§}1/2[.923+.199[1—sin£t6/2)] . (C.107)
OZI;~ .13 2 \ cos(7§/2)

3. Kaya and Erdogan, 1980, [63], used in Refs. [54,56-60].
k
L 1.1216+6.5200¢2-12.3877¢4+89.0554¢°
o da
1
-188.6080¢5+207.3870¢10-32. 0524¢12 | (C.108)
ky 2 3
= 1.1202-1.8872¢+18.0143¢2-87.3851¢
alraq
+241.9124¢%-319.9402¢%+168.0105¢% . (C.109)
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C.4 Line-Spring Model SIF Normalization

The stress intensity factor solutions for the line-spring model
are normalized with respect to the corresponding plane strain value at
the center of the crack. This shows how the constraining effect of
the ends affects the crack driving force. The dimensional SIFs

provided by the LSM are

K, = {réh [ 0,81 + 998y ], i A(C.llO)
K, = {7¢h 0q8, ' . (C.111)
K3 = {réh [ 0484 + O58s ] . (C.112)

These are normalized with respect to
,———-w ' i
Kjo = ffoh aksk(fo) ’ | (C.113)

where k corresponds to the loading and j=1 when k=1,2, j=2 when k=3,
and j=3 when k=4,5. Note that the primary SIF is used for all modes

given in Eqns. C.110-112.
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a/h

.0
.025
.05
.1
.15
.2
.25
.3
.35
.4
.45
.5
.55
.6
.65
7
.725
.75
775
.8
.825
.85
.875
.9
.91
.92
.925
.93
.94
.95

‘Table C.1 Stress intensity factors for an edge

cracked - strip for temsion, bending, constant in-
plane-shear, parabolic out-of-plane shear ,
twisting, and constant out-of-plane shear.

STRESS INTENSITY FACTORS

k k k k k

1 1 2 3 3

UITZ" 0213‘ asf;“ a4f§7 asI;“
1.1215 1.12156 0. 1. 1.
1.1264 1.0921 0.0670 1.0003 0.9684
1.1399 1.0708 0.1313 1.0010 0.9373
1.1892 1.0472 0.2522 1.0041 0.8765
1.2652 1.0432 0.3628 1.0094 0.8172
1.3673 1.0553 0.4638 1.0170 0.7594
1.4975 1.0822 0.5556 1.0270 0.7030
1.6599 1.1241 0.6392 1.0398 0.6477
1.8612 1.1826 0.7156 1.0558 0.5935
2.1114 1.2606 0.7859 1.0753 0.5403
2.4253 1.3630 0.8512 1.0992 0.4881
2.8246 1.4972 0.9131 1.1284 0.4368
3.3428 1.6747 0.9733 1.1642 0.3864
4.0332 1.9140 1.0339 1.2085 0.3369
4.9843 2.2459 1.0980 1.2642 0.2883
6.3549 2.7252 1.1700 1.3360 0.2408
7.2838 3.0500 1.2111 1.3801 0.2174
8.4532 3.4582 1.2572 1.4315 0.1943
9.9596 3.9830 1.3102 1.4922 0.1715
11.955 4.6764 1.3726 1.5650 0.1491
14.694 5.6248 1.4482 1.6541 0.1272
18.628 6.9817 1.5429 1.7663 0.1057
24.634 9.0444 1.6664 1.8125 0.0848
34.632 12.462 1.8368 2.1133 0.0646
40.659 14.515 1.9251
48.632 17.225 2.0304

2.0911 2.4114 0.0453
59.559 20.932 2.1584
75.23 26.236 2.3185
99.14 34.306 2.5260 2.9180 0.0273
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asfzq

.1215
.1215
.12155
.1219
.1233
.1264
.1323
.1419
1562
.1763
.2034
.2391
.2854
. 3450
.4221
.5229
.5852
.6578
.7435
.8459
.9708
.1269
.3289
.6037
.7448
.9116
.0074
.1132
.3634
.6854
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Table C.2
and g2(§) for tension and bending respectively.

.

OO W -=O

The compliance coefficients for gl(f)

COMPLIANCE COEFFICIENTS

Mode 1
Cix Cok

1.12152 1.12152
~1.67890 _3.04507
8.43058 10.49184
_29.46644  -36.66780
84.43442  110.09900
_182.05320  -255.68184
974.45012  421.97167
_952.12020  -440.50866
92.30672  199.37326
62.66657  123.93056
88.30652  -237.97164
37.54045  136.17068
5.30201  -28.91005

Table C.3 The compliance coefficients for gi(f),

i=3,
out-of-plane

4,5,6,

for parabolic in-plane-shear, constant

shear,

twisting

in-plane-shear respectively.

3k

.73069
.44019
.33305
.80514
. 94406
.74775
.63860
.32028

COMPLIANCE COEFFICIENTS

Modes 2 and 3

C

1.0
-0.4999949
0.2860705
-0.2661996
0.2193511
-0.1731221
0.1047768
-0.0418068
0.0075456

4k

c

1.0
1.773760
0.937496
0.602894
1.176914

-2.183231
2
2
0

5k

.906943
.121964
.659759
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and

constant

Cox
1.12152
~0.55939
~0.18069
0.39478
2.07787
_5.40893
5.82745

©-3.11784

0.67088
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Figure C.1 The geometry and superposition for the
cracked strip.
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APPENDIX D

Determination of the Weight Function

The solution of a singular integral equation such as Egqn. B.5 or
the strongly singular version, Eqn. B.9 involves obtaining ¢(x) or

v(x) for acx<b. Before attempting the numerical solution, the

behavior or weight of the unknown at the endpoints, a and b, should be

determined that will force the singular or dominant integral to be of
the same order as the other terms in the equation. Without this
asymptotic behavior an accurate solution near the ends is difficult to
obtain, although in the central portion convergence is acceptable (at
least for the integral equations studied in fhis dissertation). We

then seek to obtain a and f defined as, -

6(t) £(t) (b-8) 2 (8-2)P 1, (.1)

£(t)w, (t)

V() = g(®)my(®) = g(8) (b-6)%(t-a)? , ©.2)

for finite

g(2), g(b), £(a), £(b) # 0, (D.3)
where wi(x) are known as weight functions for the integra1>equation.

The typical integral equation studied in fracture mechanics has a
right-hand side (p(x) in Eqns. B.5,9) that is of order one. Here the
weight function must be such that the singular term in these equations
is finite. All through crack problems are in this category. However
for the part-through crack case, only when the crack shape, £(x) is of

the form,
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) = 0T, 1< 14, (D.4)

is this condition met. If 7 > 1/4 the line-spring terms will be
unbounded and for g < 1/4 they will be zero (see Chapter 2). If 7 >
1/4, such as for a semi-ellipse (7 = 1/2), a solution for a<x<b can
only be obtained if a weight is chosen that will duplicate this
unbounded behavior. For the special case where K(x,t) is zero (see
Egqn. B.5,9) and  7 < 1/4, the weight function should be chosen such
that the singular integral matches the 7 dependent zero behavior of
the line-spring contribution. In both of these cases the weight
function will be such that the displacement profile will be physically
unacceptable. If this magching is ignored and the through crack
weight is wused forrall 7, a convergent solution to the parﬁ;through
crack problem can still be obtained for about 98% of the‘domain, a{x<b
without too much extra computer time. 0f course this is well beyond
the expected range of validity of the line-spring model, and therefore
all crack shapes will be treated as though the resulting line-spring
terms are of order one. One way to deal with this problem, shown in
Chapter 2, is to force 7 = 1/4 behavior at the endpoints.

o First consider the internal crack case of an equation of the form
of B.5. From the basic theory of Muskhelishvili [78], and from Eqn.

B.22 to extend this theory to finite-part integrals (see Kaya [67]),

we have,
. b .
lim 1 v(t) ~ lim v(x)
xvax ], (t-x)2 dt & -ficotnf “a x-a " o) , (D.5)
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lim 1 v(t ~ lim v(x
b T -(—1;-(:%— dt ¥ -acotra b _t(:n)f + 0(1) , (D.6)

where

v(t) = e®) (-0 (t-a)’ ,  g(@),8®) # 0. ®.7)
For Eqns. D.5,6 to be of order one, |

cotrf = cotwa = 0 . » . (D.8)
This gives,

p-a=1/2,3/2,.... (D.9)
As a rule for deciding what form to take for finite-part integrals,
Kaya [79] states that all roots should be used such that g(x) and its
derivatives remain bounded at x approaching a and b. Therefore we
take, |

a=p=1/2, | (D.10)

and

v(t) = g(t) (b-t) /3 t-2)1/2 . » (0.11)
In order to obtain the compliance functions used in the line-
spring model, the edge cracked strip (Appendix C) must be solved. The
crack opening displacement, v(x) will have a different weight function
than Eqn. D.11. From Eqn. C€.39 note that there are integrals which
become 'singglar'when both t and x go to zero simultaneously, so these
terms must be included in the limit as x+0.
)(—"Lt—’l—dt+1j—"(1')—dt 1 (° 12t v(t) dt ~ 0Q1) ,
0 (t-x)2 0 (t+x) )y (bt (D.12)

for
vit) = g®)b-8)%P ,  g(0),a(b) # O . (D.13)
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The analysis for x at b is the same as for the internal crack. From

Ref. [67] we have,

lim 1 vit} dt = —ﬂcotxﬂ 11m v(x) , 0(1) , (D.14)
x*0 7 x
0 (t- )
lim 1 _xi&l_ _ B lim v(x)
x*0 7 0 (t+x) ~ sinff x40 x +0(1) , (D.15)
1 A2xt 12(+1)f(6-1) lim v(x) '
0 (t+x )4 v(t) dt = 3!'siny(f+1) x0 «x +0Q) . (D.16)

Therefore the characteristic equation for f is,

_pcotnf - » 2P _ o (D.17)

51n1ﬁ sinr(f+1)

which reduces to,

r—;é—— [cosmf - 1 + 2p2] =0 , | ~(D.18)

sinxf

which has the root f = 0. Therefore for an edge crack,

1/2

v(t) = g(t) (b-t) - (D.19)

317




APPENDIX E

Numerical Methods for the Solution of Singular Integral Equationms

In this section the two most common numerical methods for solving

singular integral equations of the following form will be considered:

. |
Jf U8 4 o [g(6)K(x,t) db = p(x) , acxcb , (E.1)
A |
j( —1’—&;— dt - j v dt = px) , acxch (E.2)
t-x

These two equations are equivalent for

v(t) = V) - v(E) , $() =3, (B3
with the condition _
v(a) = v(b) =0, (E.4)

which for Eqn. E.1 is expressed as,

: |
[4) at=0. (E.5)

Both solution methods can easily be generalized to include multiple

unknowns and multiple cracks, so for simplicity will be left out.

E.1 Quadrature.

Here we consider the solution of Eqn. E.1 for the case of an
~internal crack. The first step is to express the unknown in terms of

its weight function given in Egn. D.11. We have,

_f(1)
t) = . E.6
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This is substituted into Eqn. E.1 using the following definitions:

t = béér + béé ) (E.7)

X = b;’—as + b—;ﬁ > » (ES)

p0) = 3(s) (&.9)

b0 =G 0 =i (E.10
(1-t2) |

L(r,s) = B2 K, (B-11)

to obtain,

+1 - +1 7 -
( f(r) dr . | __i12177§ L(r,s) dr = p(s) , -1<s<1 .

I -2y Y q-rHyY (E.12)

We now make use of the quadrature formula

+1 N
—1‘-(1)1—/2— dr = > wh(r.) , (E.13)
-1 (1-r j=1 9 J :
where
i-1 .
Ty = cosﬁjir , j=1,...,,N, (E.14)

wj = ﬁ y 3 =2, ,N-1
W, =Wy = (E.15)
1 N~ 2(N-1) ° '

This quadrature is exact. when the function h(t) is a polynomial of
degree (2N-1) or less and therefore has good convergence when
integrating the well behaved Fredholm kernel L(r,s) in Eqn. E.12 as N

is increased. However the integration of the singular term in this
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equation introduces a relatively large error which has been found to
be proportional to the Chebychev polynomial UN(r). Therefore when
values of s are chosen to make UN zero, the error is reduced and the
integration is exact for polynomials of degree 2N or less. The s

values are,

s; = cos"N—] % , 1i=1,...,81 . - (E.16)

It is this information that makes the method work. Applying the

quadrature formula to Eqn. E.11, we obtain,

N .
1 . :
> :lef(rj)[r._s. . L(rj,si)] =p(sy) , i=1,..,N1, (B.17)
J= J 1

which is a system of N unknowns (g(rj) , j=1,...,N) and N-1 equations.

Recalling Eqn. E.5 we supplement Eqn. E.17 with

N
gwjf(rj) =0, (E.18)
J:

which can then be solved as a system of linear algebraic equations.
Convergence is obtained as N is increased.
In the case of an edge crack where a = 0, the weight function

changes (see Eqn. D.19) and ¢(t) becomes,

o) = (B.19)
(b-4)

After substitution using Eqns. E.7-11 with a=0, the singular integral

equation, E.1 becomes,

L(r,s) dr = p(s) , -1<s<1 .

J(*l f(r) dr J*l %(r)
1 (-r)l/2 (E.20)

41 (1-r) 2 (ros)

The necessary quadrature for this weight function is,
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+1 N

[ 2B g - ey, (B.21)
-1 {1-r j=1 3 3

where now the values of wj and rj must be obtained numerically as

roots of the following Jacobi polynomials:

pN(‘l/zf‘l)(tj) =0, j=1,...N . | (E.22)

P2y =0 , i=1,... 01 . | (E.23)

It is easier to use Eqns. E.12-16 and include (1+t)1/2

in the function
f(r). For the edge crack however, Eqn. E.18 is feplaced with

h(-1) = h(ty) =0 . | (E.24)

The quadrature method is not a goodbchoice for the solution of
strongly singular infegral equations such as Eqn; E.2 because the
existing quadrature formulas for finite-part integrals involve
operations that make solving the integral equations far more
complicated than solving the equivalent equation with a 'Cauchy
singularity, (see [67]). Perhaps in time a more convenient
quadrature will be developed. A better and simpler approach to
solving Egn. E.2 is the expansion method, or more specifically, the

collocation method.

E.2 Collocation.

First consider the internal crack where the unknown is expressed

as

v(t) = g(t) (t-a) /2 (b-1)1/2 (E.25)
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Note that Eqn. E.4 is satisfied which shows an advantage of using the
displacement as the unknown which leads to a strongly singular

integral equation. Again use Eqns. E.7-9 with

v(t) = 252 V(r) (1-r? 1/2 (E.26)
b-a 26K .
L(r,s)l= [-5-] 3t _ (E.27)

Substituting into Eqn. E.2 we obtain,

+1 - | 2 +1_ - '
1(:)__1;__ dr + I v(r) (1-r2) 2L (r,s) dr = p(s) N
-1 (r-s) -1 -1¢s<1 . (E.28)
Next we choose
v(r) = Z a.f. l(r) y (E.zg)
j=1 J J)- -

where fj(r) are linearly independent functions chosen to "fit the
curve"” and the aj are coefficients to be determined. I believe that
it is best to choose orthoganol polynomials so that the coefficients
show convergence aé N is increased. The proper choice for the weight
of Eqn. E.28, is the Chebychev polynomial of the second kind, Uj—l(r)'
With other functions such as a simple power series rj—l, convergence
can only be seen by calculating the sum (Eqn. E.29) as the
coefficients themselves do not converge. Also as N gets large the
coefficients of rj_1 can get large enough to cause round off error as
was experienced with the thin plate limit in Chapter 3. This problem

is avoided when using orthoganol polynomials. These convergence

characteristics are shown in table E.1 where the coefficients, a; are
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listed for N = 10 and 20, using both U )(r) and r(2j—2) for the

(2j-2
fitting function, f(2j-2)(r) (see Eqn. 29). The problem is symmetric
in r so only even functions have non-zero coefficients. This shows
slow convergence typical of part-through crack problems. Although the
(2j-2)

numbers for N = 20 and r are large, they give the same result as
the Chebychev polynomials. Mostly all problems can be solved with
power series, but the orthoganol polynomials, I believe, are better.

Next substitute Eqn. E.29 into Eqn. E.28 to obtain,

2.1/2 |
N +1 £, 1- +1
:E:aj{¥ _Jfflfi_f_) dr + I fj(r)(l-r2)1/2L(r,s) dr} = p(s)
i=1°7-1 (r-s) -1 ~1¢s<1 . (E.30)

With this method there is no restriction on the choice of s as long as
it does not coincide with r in Eqn. E.30. Roots of Chebychev
polynomials which concentrate points near -1 and +1 are a good choice
when information near the endpoints is needed such as the
determination of stress intemsity factors for through cracks. Table
E.2 1lists the coefficients for N = 3 and 6 and the resulting stress
intensity factor to show how good convergence is for this type of
integral equation.

A more uniform spacing of points has been found to be a better
choice for convergence of the line-spring model where information in
the central portion is more important (see Table E.3 ). In this table
equally spaced points improve convergence by about one order of
magnitude. Another reason to pref;r this choice of 8 is that the
solution is most accurate there (recall that the collocation method

gives the solution for all s) and it is more convenient to know the
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solution at these points than at the roots of an orthoganol
polynomial.

For a given value of s there are two integrations to perform in
Eqn. E.30. Any standard technique can be used, for example Gauss-

Chebychev quadrature which takes advantage of the weight,

+1 2.1/2 M
[ h@a-H 2 ar = Swhiry) - (B.31)
-1 k=1
where
2
x . _kx
LTI [SIni:T ] , (E.32)
k
T = cosiz% . (E.33)

The first integral can be determined by using Eqn. B.27 or for certain
expansion functions fj(r) such as Uj(r), there are closed form

expressions. For example,

AU, (1) (-1 1/2
j( 1 -J(—)z—— dr = -7(j+1)U;(s) - (B.34)

See Appendix A or Ref. [67] for similar formulas for other functions
and other weights. Thefefore if Eqn. E.30 is evaluated at N different
points, the coefficients, aj , j=1,...,N can be determined. Also a
least squares technique can be applied if more than N values of s are
selected. |

Both numerical methods have been used in this dissertation, and
the collocation method has been found to be better. One important
advantage of this method is that the number of unknowns is unrelated

to the way in which the integrations are performed. This makes for
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better efficieﬁcy. Another advantage is that the function is given at
all points instead of at discrete values of s as in the quadrature
method (Eqns. E.16,24). This makes convergence easier to check
because with quadrature, as N is increased, the stations at which the
function is given, shift. The only common points from one value of N
to another are the endpoint, the most difficult to converge, and the
midpoint which is the easiest. With collocation either the same
values of s can be used for successive N values, or the function can
simply be evaluated at any point according to Eqn. E.29. I have found
the collocation method to be most accurate when N unknowns and N
equations are used as opposed to using the before mentioned least
squares method. This is similar in principle to curve fitting.
For the edge crack the technique is similar except the singular
»integral in Egn. E.30 must bevsolved numerically because éxpressions
such as Eqn. E.34 are not available for a (l-r)l/2 weight. Kaya [67]
Lhas developed a scheme which gets around this. Instead of normalizing

from -1 to +1, he normalizes from O to +1 as follows,

t = br , (E.35)
x = bs , (E.36)
v(t) = bv(r) , (E.37)
L(r,s) = b® X (E.38)

Then Eqn. E.2 becomes,
1 T(r 1 _
) g - [V(@)L(r,s) dr = p() , O<s<l (E.39)

0 (r-s) 0 '

Now we can use

325



Y1) = g(r) 112

Also if
[ T
-1 (r- s)

is added and subtracted from Eqn. E.39 we have,

1 -2.1/2 +1
[ a0 2 +J g(r) (1-r )1/2L(r,s) dr -
-1 (r—s)2

0 1/2 _
I g(r) (1-r ) dr = p(s) , O<Ks<1 .

-1 (r-s)

Now the singular term can be evaluated in closed form.
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Table E.1

Coefficients for expansion functions,

Uj~1(r) and rJ_1 for a part-through crack to show

convergence for coefficients of U for increasing N

and to show how power series coefficients get

large.

j

N =10
1
2
3
4
5
6
7
8
9
10

N=20

DO bbbt b b et ek ek ek ped b
COONOUNMABWNEODOONI®DU WM

€ = .6(1—’s2)1/4 , tension.
Ui23-2)®)
1j 323
.602954¢00  .201102e01
.353661e-1  .357367e-1
.633608e-2  .297401e-2
.238070e-2  .120856e-2
.115589e-2  .878486e-3
.672035e-3  .658983e-3
.448539e-3  .514599e-3
.336133e-3  .429394e-3
.280330e-3  .389471e-3
.128226e-3  .192492e-3
.602962e00  .201104e01
.353528e-1  .357460e-1
.631705e-2  .207507e-2
.236433e-2  .119822e-2
.112297e-2  .854624e-3
.629824e-3  .618609e-3
.394573e-3  .453260e-3
.266935e-3  .340355e-3
.191184e-3  .262485e-3
.143208e-3  .207703e-3
.111307e-3  .168386e-3
.893108e-4  .130685e-3
.737318e-4  .118478e-3
.624979e-4  .102717e-3
.543247e-4  .910346e-4
.483900e-4  .825134e-4
.441540e-4  .765362e-4
.412504e-4  .726040e-4
.393969e-4  .706965e-4
.190835e-4  .349693e-4
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~(2i-2)
31j 29;
.633626e00  .197755e01
.995538e-1  .124094e00
.991316e-1 -.204339e00
.223967e01  .373660e01
.170071e02 -.275699e02
.676896e02  .107146e03
.150545¢03 -.234331e03
.188716e03  .289774e03
.124487¢03 -.188933e03
.336138¢02  .504607¢02
.633599¢00  .197746e01
.981042e-1 - .124878¢00
.127104e00 -.752523e00
.116577¢02  .472852e02
.413200e03 - .145520e04
.841220e04  .265618e05
.109143e06 -.315897e06
.963774e06  .259884e07
.605181e07 -.153958¢08
.278436e08  .674988¢08
.957704e08 - .223025¢09
.249352¢09  .561471e09
.494303e09 -.108197e10
.745521e09  .159325e10
.848642e09 -.177709e10
.716454e09  .147440e10
.434607e09 -.881107¢09
.179004e09  .358246e09
.448065e08 - .886709e08
.514322¢07  .100789e08



Table E.2 Convergence of expansion function
coefficients aj and normalized stress intensity

factor k1/(02I;) for a through crack, a/h=1, v=.3

i a; kl/(02IZ)
N=3
1 .00000 .255900e01
2 .58779  .126237e00
3 .95106 .103953e-1  .74742
N=6

.00000  .255883e01
.28173  .125167e00
.54064  .103724e-1
.75875  .508637e-3
.90963  .159547e-4
.98982  .334089e-6 .74748

DU W)=
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Table E.3 The effect of the choice of the
collocation points, sj on convergence for a part-

through crack loaded in tension.

OO0 ~ID U AN O
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£ = .6(1-s2)1/2 ¢ = .6(1-s%)1/4

%j 1j 2j 13 *2j
.517675e00 .179305e01 .602886e00 - .201108e01
.826466e-1 .932252e-1 .353093e-1 .357855e-1
.862004e-2 .478427e-1 .625598e-2 .298601e-2
.320951e-2 .163700e-1 .228765e-2 .117540e-2
.154063e-2 .772860e-2 .103516e-2 .799027e-3
.816275e-3 .413912e-2 .535729e-3 .535892¢-3
.454261e-3 .232331e-2 .296962e-3 .349407e-3
.249781e-3 .128652e-2 .165651e-3 .218096e-3
.125213e-3 .650011e-3 .858241e-4 .123060e-3
.514386e-4 .269770e-3 .372392e-4 .571948e-4
5 .148252e-4 .787855e-4 .116721e-4 .18976be-4
8 .217783e-5 .117624e-4 .192020e-5 .327248e-5
.0 .517492e00 .179224e01 .602958¢00 .201103e01
.13617 -.828914e-1 .945347e-1 .353590e-1 .357420e-1
.26980 -.891617e-2 .494622e-1 .632578e-2 .297444e-2
.39840 -.353796e-2 .18180%e-1 .237578e-2 .120271e-2
.51958 -.188429e-2 .963221e-2 .113751e-2 .864942e-3
.63109 -.116178e-2 .605954e-2 .647982e-3 .635656e-3
.73084 -.796345e-3 .422672e-2 .417042e-3 .478286e-3
.81697 -.590135e-3 .317589e-2 .294652e-3 .375106e-3
.88789 -.465276e-3 .253009e-2 .225401e-3 .308416e-3
.94226 -.386326e-3 .211617e~-2 .185580e-3 .270293e-3
.97908 -.334534e-3 .184705e-2 .163903e-3 .251536e-3
.99767 -.1498021e-3 .840827e-3 .767395e-4 .124182e-3



APPENDIX F

Short Crack Analysis of the Compliance Functionms

For small £ (small crack depths) we write,

2 3 4 5
gl(f) =cq+ cllf + c12§ o+ c13§ + c14{ +‘c15§ + ..., (F.1)
2 3 4 5
8o(£) = g + cgp€ * cppl” + cogl” ¢ cpel” + cpgl” 4 ooy (F-2)
where
50 = %0 » C10 = %20
41 = 3/20% Oy
Cig = 15/80i0+ 3/2Cil+ C12 R
c;5 = 35/16C,+ 15/8C,  + 3/2C,,+ C,q , -
c;, = 315/128C,+ 35/16C, + 15/8C; 5+ 3/2C, 5+ C;,
c;s = 603/256C,+ 315/128C, ;+ 35/16C, 5+ 15/8C, g+ 3/2C; ,+ Cis(ﬁ .
where cij are listed in table C.2. From Egn. 2.26,
2,2 3 4, 2
2, = 1{ 1/2cof + 2/3c0c11§ + 1/4¢ [cll + 2c0012] +
1/5(5[2c Ciq + 2¢iiCi0] + 1/6{6[2c oy + €2+ 2¢i1c ]+
0713 11712 0714 12 11713
1/7§7[2c Cip + 2€y4Cq, + 2C,,Cqq] + 0(§8)} (F.4)
0715 11714 12713 ! )
2,2 3 4. 2
@y = f{ l/2co§ + 2/3c0c21§ + 1/4¢ [021 + 2c0c22] +
1/555[2c Coq * 2C51Chn] + 1/6{6[2c o + C2. + 2c..cC ] +
0723 21722 0724 22 21723
1/7{7[2c Cor + 2CH1Chy + 2CHnChal + 0({8)} (F.5)
0-25 21724 22723 ! '
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a =a

2.2 3
12 = %9y = ”{ 1/2e0€” + 1/3¢7[egeyy + cofqql *

4
1/487[eq1%9) * o2 * %°12) *
5
1/5¢"[eqeqg *+ coC13 * ©11%92* S21%12) *
6
1/6€"[ccoq * 014 * €113 * ©21°13 * ©12%22) *

7
1/7¢" [egtos * oS5 * ©11%4 * ©21%14 * ©12%23 * C22° 13]](F 6)

Eqn. 2.33 relates 7ij to aij as follows
(1—;,2)711 = ,{ 5'41/20.(2)61 + £ [2/3co 0101 * 1/260 o) +
§"2[1/4(C§1 + 260C50)8; + 2/3cch 00 + 1/2c§63] .
5—1[2/5(coc23 + C1Coo)ly + 1/4(;31 + 260 Co0) 0y +

' 2/3ccy 0, + 1/2626,] + 0(1)} , - (F.7)

(D‘_\

36(1- yz)'lv ‘I{ 1 2:;. 5 + §-3[2/3COC1161 + 1/2CA6 ] +

22 1/2¢4
£2[1/4(32, + 2c,cy,)0 L 2/3cnc, 6o + 1/2¢26,]
' 11 * 2%0°%122% 0°11%2 0’3

-1 2
€ [2/5(cqeq3 + c13019)0) + 1/4(eqy + 200019)05

2
2/3c4c1;05 + 1/2028,) + O(D)} (F.8)
2 2 -4 2 -3
-6(1-v )712 = -6(1-v )712 = 1{{ 1/2c061 + € [1/3co(c11 +‘c21)61
+'1/2c26 ] + 5_2[1/4(c Coy + CnCon + CnCyo)0, +
0°2 11721 0722 0712’71
1/3c,(cqq + €n )6, + 1/2c26 ] +'f-1[1/5(c Coq + CACyq +
011 21772 0°3 0723 0713
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where

and

€112 * 91612791

2
1/3cq(cyy + Cgp)03 + 1/2c6,] + o)},

1
5. =1
178
.
27 32
1
2
5 Ag-8,44
377 3 ¢
1
3 2
. 83-28,8,8,+020,
4= y
A
1

_of. 2. 2 2 2
by = {1/8°o(°21*2°o°22+°11*2co°12) + 4/8cycy1%9) -

t

2 2 2
1/9cq(ey1%e9))” - 1/4°o(°11°21+°o°22+°o°12)}-'

Cof .2
by=7 {1/5°o(°o°13*°11°12*Co°23*°21°22) -

+ 1/4(c

11621 * ©0C22 * 01200 *

v

(F.9)

(F.10)

2 2 2
1/6co(cl1c21+2coc11c22+c21c11+2c0c21c12) - 1/5co(c0c23+c0c13+

©11%22%€91%19) - 1/6°o(’:11"°21)(°11°21""o°22“°o'°12)} ’
_ 2{ 2 2 2
By = 7°{1/12¢(2ccoa+Coo+2Co) Cog+2CCy 4+C19+2C 10 3) *

4/15¢(cc11%93%C11 91 S0 021 €13*C2111%12) *

2 .2 2,
1/16(cy+2¢4C) ) (g +2c0Cog) — 1/Bch(cnios*CC14*C21%13%C1222"
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| 2
©11%93) - 1/16(cy 0914cCon*cocyg)” -
2/15°o(°11*°21)(°o°23*°o°13*c11°22*°21°12)} ,
A, = t2{2/14c2(c CortCo1Cns+ConCoatCnCye+Cq1C14+C10C1a) +
4 400 (C0°a5+ 214" %22°23* %0°15* 1114 “12°13
s 2 2 |
/9e(2¢4c11%94%C11%22*2%91©11%23* 2% 21°14* ©21512* %1121 ©13) *
1/20(c2 +2CnCq0) (2€1CHat2CH1Chp) +
11*2¢0%12) (2¢ptq3+2¢91 259
1/20(c2 +2¢,Cho) (264C10+2C,1Cp) - 1/7c2(c CoptCnCqetCqqCnyt
21*2¢0C90) (2¢cy3+2¢15¢19 0(%0%25*%C 1511 24
C1%14*C12%23* C92t13) ~ 1/9¢p(cyy+ea1) (cgCag*cC 4*C11 03"

L - \ L AT . Y - o A P N e C +
€91€13"%12%2/ = /U C11%917% 227012/ \“0“237“0"13

c11c22+c21c12)} . | -(F.11)
Now I have
N1 = sl§—4 + 52§_3 + 536_2 + s4§_1 +0Q1) , (F.12)
Top = € ¢ apf 0+ agt ¢ g7 v 0()  (F.13)
Tg = Tgy = t1§’4 b€ b 2 g s 0(1) (F.14)

where S5 ti and 9, i=1,2,3,4 can be obtained from Eqns. F.7-9. Now
consider the stresses (recall Egqn. 2.31),

“(5)711(5) + ﬁ(s)712(£) ’ (F.15)

g

1

g

2 u(s)721(€) + p(5)722(§) ) (F.16)

where for the remaining analysis,

€ = g,1-sH2 (F.17)
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I will also assume that the loading is symmetric in s, so the

following expressions for u(s) and f(s) are used,

N
= —52 1/2 a s
u(s) = (1-s%) 55; 15%(25-2) ®) > (F.18)
By = B2 Soa U () (F.19)
= 2230250 @ - ¢

For small £ or for s near 1,

N

_E v 2. ) L oced
u) = £ j:lalj{bj ¢ cj} oceh , (F.20)
N
£ v 2. ) . ocet
p(s) = £0 ;g;aZj{bj § Cj} 0(¢™) | (F.21)
where
bj = (2j-1) , T(F'22)
_ i-1
. =2 > i, (F.23)
1ogy il

The following expressions result for Egns. F.15,16,
a({)-l—% {35, + %5 +§'1(b +c.s,) +
10 =5 &5 2518 Py®1 v €0 i°3 * ¢5°1
(bysy + °552)} *

N
-3 -2 -1
;é: {f bjtl + ¢ bjt2 + € (bjt3 + cjtl) +

P
S I

(bsty + cjt.z)} + 0(6) , (F.24)

N ,
I -3 -2 -1
2(f) ¢ ;é { bjtl + £ bjt2 + € (bjt3 + cjtl) +

o
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(bsty + cjtz)} .

2

N
a
j=1

mlp-l
o

-3 -2 1, |
os{€7%5ay + %050y + €71 (bjag + c5ay)

(bsay + chz)} + 0(F) . (F.25)
Using the prediction of Chapter 2 that the strésses must have a square

root singularity at the ends, i.e. f—l, we must have,

. |
1 { -3 . -2
= . b. b.
',£0 =1 alJ 3 Jsl +§ Js2} *
N ' ' .
1 { -3 -2 :
- . b.t “b.t,t = 0 - (F.26
£ 2 a7 gt} - 0, | (F .26)
'R ZN a {('3bt +g’2bt}+
N
1 -3 -2 -
e ;ii azj{f bay + € quz} -0, (F.27)
which is true if
N
.b. = F.28
jglalJJ 0, ( )
and
N
> .b. =0 . F.29
=R (F-29)

This is equivalent to saying that the through crack stress intensity

factor is zero, because

k N
. g a

..b. , i=1,2 . (F.30)
ola j=1 1
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APPENDIX G

Stress Intensity Factors

G.1 Elasticity Theory.

‘The study of the static stress distribution near the tip of a
crack inva linear, elastic solid has Been reduced to the determination
of constants called stress intensity factors (see Irwin [68,69]). To
illustrate this consider the two-dimensional plane geometry where
Williams [4] and Sih [80] have given the asymptotic form of the
stresses of"i§~planq and anti-plane loading, respectively. These
solutions, presented below, are obtained by use of eigenfunction
expansions which satisfy the crack surface boundary conditions. The
coordinate system is chosen to duplicate the through crack geometry
used in this dissertation where the crack lies in the yz-plane with z
tangent to the crack front. The polar coordinates r,0 are measured

from the crack tip and lie in the xy-plane.

o v }2% cos% [l-sin% sin§% ] - }%% sin% 2 + cos% coség] +
0 2021
' I‘Z‘l [blﬂr i f120) bznrnfzn(e)] , (6.1)
. = % cosd [1sind sin ] + _rg_z sind cosd cos®d +
® 2n-1
togg t 32 [y P 13,0 ¢ by, 0] (©.2)
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k
o = 2v [ 1 cosg - —2 sin% ] + Vgt
z {2r I2r
w 23—1 .
. n% [be,r 2 25,(0) + bgyr £, (9] (G.3)
50 0 30 X2 0 .6 . 30
T = sing cosy cosT; + cosy [l—sm2 sin%y ] +
¥ or I2r
o 2;-1 L :
P [b,r 2 1, (0) + byt (@] @.4)
2n-1
k o
~—3 08, 2 n
Tyz - 1ng :g: [ an(o).+ b10nr f10n(9)] !
rz‘r (©.5)
I I Z [b T £ (0) + by, if '(a)] . (G.6)
Xz [on 2 = 11n" 11n 12n° "12n :

The stress intensity factors are kl’ k2’ and k3 which correspond to
the opening (symmetric), sliding (skew-symmetric) and tearing (anti-
plane) modes of fracture shown in figure G.1. Equations similar to

G.1-6 exist for displacement as follows,

v(r,0) = ;ﬁ [2r [(25-1)cos§ - cos3”

+ ;% i2r [(25+3)sing + sin%Q] , ) (6.7).
u(r,e) = fﬁ; [(25+1)51H‘ - sxngo]

) 2% for [(2”_3)”5% ' °°sg—8] , (G.8)
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k
3 I2r sin
b

w(r,8) =

Vi

, (G.9)

where g is the shear modulus, v is Poisson’s ratio, and £=4-3v for
plane strain and £=(3-»)/(1+v) for plane stress. Clearly the stress
intensity factors play the important role in the expansion near the
crack tip and have been shown to play an important role in fracture
[68] or more recently [70].

The singular terms in the stresses have also been shown to apply
to geometries other than plane strain. Irwin [68] examined Sneddon’s
solution [81] of a circular shaped crack in an infinite solid under
mode 1 loading and found that in a §1ane normal to the crack front the
definition of k1 is the same as for the straight crack front éf plane
strain. Since then Kassir and Sih [82] have proven this to apply for
a plane elliptical crack under general, or mixed—mode. loading
conditions. It may be assumed that this result will hold for any
plane crack with a smooth crack front, see Ref. [83].

From Eqns. G.1-9 we define the stress intensity factors in terms

of stress and displacement below.

k, = iiﬁ [2(r5) 0,(0 y,2) , | (G.10)
- %%I ;iﬁ IE?%?FT [ w(0*,y,3) - u(07,y,2) ] , o - (é,li)
ky = yop 120°5) 7,,(0,3,2) (G.12)
= 2 iig {Ez%jgj [ v(0*,y,2) - v(07,y,2) ] , (G.13)
kg = oo 207°9) 7, (0,7,9) , (6.14)
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= ‘2" kﬁ 12(,1,—.1,) [ w(0',y,z) - w(0,y,2) ] : (G.15)

These expressions are not valid at the point where a crack front
meets a free surface. Benthem [1] has found that the stress
singularity ‘at this point is dependent on Poisson’s ratio and is not
equal to .5. The values for the order of the singularity are given in
table G.1. For mode 1 the exponent is less than .5 and for modes 2
and 3 it is greater than .5. In most theoretical work a singularity

of .5 is assumed along the entire crack front, see for example Ref.

(33].

G.2 Plate and Shell Theory.

The typical expression for stress resultants in either plates or
shells is of the non-dimensional form
b uy (t)
a (t-y)?

from which the singular integral equations are obtained

F. (O,y) === I dt +0Q1) , y<a, &y , i=1,...,5 , -(G.16)

c; ;b u, (t)
T o (tey)?

b

dt +

5 /b
.Zi J u (0K;5(,t) b, ady<h , i=1,...05 (6.17)
=1 "a

where k corresponds to the loading where aik is zero for i#k and one
for i=k. Fi’ ci,and u, are defined in the following equations where

"a" represents the dimensional form, and "b" the non-dimensional.

{F} = { Ny, /hE, M  /h°E, V,12(1+)/5hE, N,,/hE, M ,/b°E }
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= Nxx’ xx’ vx’ xy’ Mxy L (G.18a,b)
{ N Myps Vi Nygs Mg } =

{ boyp, b2/ (6)agy, 20/ (3)agy, hop, b2/ (B)ogy }
{ NXx’ xx’ vx’ ny’ Mxy b=

{ gy 02/6, 038(1+u)/5, 04 05/6 } (G.19a,b)
o, =0,/ - (6.20)
{c}={1/2, 1/24, 1, 1/2, 1/24 } , (6.21)
(o} ={u/h, P u /b, u/h, B}

={ Uy, Ug, Uz, Uy, Ug } (G.22a,b)

with only one exception for the shell,
u, (6) = hu,(t) + (X2/X)2tu3(t) : »(c.za)

where Xz and \ are shell parameters defined in Appendix A. To obtain
the stress intensity factors (both primary and secondary) from G.17
using G.10-15 we first convert G.17 to

1 fi(r)(l—t2)1/2

1
-1/P, 6., = = r
k'ik «* %_1 (r-s)2

5 +1
+§: %‘ I fj(r)(l-r2)1/2Li,(s,r) dr ,—1(5(1, i=1,...,5 , (G.24)
1% 71 j

where

_ b-a b+a
t = 2 T + 2

1

L;(s,7) = ((-2)/2)%K;(r,0) | (c.26)
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1/2

us(6) = -0 ) 2 (v
- B2 maH?
=13 95— £.(0) (1-r2) /2 | (6.27)
J
o, = PF, (G.28)
{P}={1,6, 5/(8(1+»)), 1, 6 } . _ (G.29)

To calculate stress intensity factors we require the three-dimensional

stress in dimensional form. From Eqn. G.16 with substitutions from

G.25-27,

F,0,9) #1 1, (r) (1-13)1/2

|

o 2 dr + 0(1) , i=1,...,5 . (G.30)
Ok -1 (r-s)

From Egn. G.28, using G.25 to convert functions of y to s denoted as
such by a bar, we obtain,
Ei(o,s) ) Fi(o,s)

2 P, . (6.31)
oy : :

F
k
In terms of this stress ratio, (dimensional and non-dimensional are

equivalent, see Egn. G.20), the stress expressions needed for Eqns.

G.10,12,14 are,

0,(0,s)
ax(O,y,z) = kD 1(z) for tension, (mode 1),
5
2(0 s)
= h, (2) for bending, (mode 1),
kD 2 ®
k
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T (0 y Z) = 3 h (Z) ’ 0’,73(0"5)_ \ e a.,b,n#-p1 ane shear

’ y PSS Vuwv va A ChAd N A 2 )
ya kD ~3 ; 3k J (mode 3),

- EAUDR

T, 0,y,z) = oD h4(z) — for in-plane shear,

y , L0y J (mode 2),

© ;5(0’5)
= 0up h5(z) S for twisting, (mode 2), (G.32)
g .
k

where hi(z) are

{ hl(z): h2(z), h3(z)’.h4(z)’ hs(z) } =

= {1, 2z/h, [1-(22/0)%), 1, 22/h } . (G.33)
Next we use the following result from the asymptotic analysis of
singular integrals, -

‘1 fi(r)(l—t2)1/2 L ()
-1 (r—s)2 T s {2(s-1)

From Eqns. G.10,12,14 we can write

lim 1
sl 7

+0(1) ,IsI>1 . (G.34)

K = iig [3(36) 0(0 y,2) . | | (. 35)

which becomes after using G.25,30,31,32,34,

; 1/2 f.(s)
lim (b- o
ki = on (32 =D "knhi(ﬂl’irﬁ:—a): , (6.36)
. 1/2,
= [EEEﬂ g ph; (2P, (1) (6.37)

where j=1 for i=1,2, j=2 for i=4,5 and j=3 for i=3. Because the
functional z dependence is known for each of the loading cases, it is

sufficient to use the maximum value of hi(z) which is one. After
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normalizing,

7z = B M (G.38)

fof the crack tip at y=b and similarly for y=a

- iz = Pifi(-l) . ' (G.39)
”kn[ 2 ]

In solving the integral equation, the function fi(r) is
determined on the interval -1<r{1. It is therefore a simple matter to
determine the value at the endpoints for substitution into G.38,39.

Next the stress intensity factors will be calculated in terms of .

the displacement. From Egns. G.19a,b

u(0,y,2) = hu;(0,y) + (22/h)h/2u,(0,y) ,

v(0,y,2)

hu4(0,y) + (2z/h)h/2u5(0,y) . (G.40)

The expression for the out-of-plane displacement w, is not known as a
function of 2z and will be dealt with later. For modes 1 and 2 we
proceed as follows. Egn. G.27 is substituted into the above

displacement expressions and then Eqns. G.11,13,15 are used to write,

_ hE lim f - . -
ky = 7;0; ¥*b 12(y 75y B (z) k 2h £;(s) 41- -s? ‘ o
h, (z)0 1/2
_ i kD (b-a .
= Ty.b.c. [ 2 ] £.(1) , i#3 (G.41)
J 11
where
+ E 3-v
U Ty T U, =T FE Lo
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7

1
o

6.

1

2, j=1,2 (i.e. i=1,2,4,5) , 7, = 2(1+¥) ,

1, i=1,3,4 and 6, = 2, i=2,5 . (G.42)

Therefore the normalized stress intensity factors calculated from

displacement are,

kj fi(l)
= (G.43)
kDU 2
and
k. : f.(-1)
1 i
= (G.44)
kDU 2
From Eqns. G.38,39 and 43,44 we should have,
| 1/Pi = 7j61ci . . (G.45)

First note that if the primary stress intensity factors fér both
stress and displacement are the same, the secondary SIFs will also be.
The four cases (i=1,2,4,5), are shown below to be equivalent when
defined in terms of stress or displacement indicating a compatibility
between this plate theory, which includes transverse shear

deformation, and elasticity theory for modes 1 and 2:

is1, 1/P, = 1 -
16,0, = @MQ/2) =1, (G.46)
i=2, 1/P, = 1/6
11655 = @@ (1/29) = 1/6 (€.47)
i=t, 1/P, = 1 |
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7264(:4 =(2)(1)@/2) =1, (G.48)
1=9, 1/P5 =1/6
To8ccs = (2)(2) (1/24) = 1/6 . (G.49)

As mentioned above, for out-of-plane shear which'represents mode
3 loading, there is a problem. The displacement plate variable u_,
is an average quantity defined in terms of the actual displacement w

as follows, see Timoshenko [84],
+h/2
3 (F 2
u (x,y) = 3 j_h/zw(x,y,z)[1 - @/m)?] d . (G.50)

The 2z dependence of u, cannot be determined because of the plate
a;sumption concerning €, i.e. o, = 0. Therefore the stress intensity
factor cannot be defined in terms of displacement. It can éhly be
shown that the stress intensity factor obtained from u, is equal to
the weighted average using G.50.

_ First assume that the actual out-of-plane displacement can be

expressed as,

w(x,y,z) ~ ;(X:Y) = huz(x)y) . (6.51)

Then by an analysis similar to that used for i=1 and 4 above,

kSavg ) f3(1) ) f3(1) (©.52)
kDL 2
The stress intensity factor from stress is given by G.37 to be,
k., (2) 5f,(1)
3 _ 773 2
7 = ) [1- e2/m)?] . (G.53)
akDfTTJ
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When this is substituted into Eqn. G.50, we obtain,

+h/2
Kaavg = & j_h/ZkB(z)[l - 22/ 4z
1/2 |
b- © 1
553 " StsWziny (€.54)

which is the same as predicted by Egn. G.52.
The shell displacement component of Eqn. G.23 also is only known

as an average quantity because of its association with u . Here
v(0,,2) = huy(0,5) + (/M (y/W)hug(0,) +
+ (22/h)h/2u5(0,y) . (G.55)

Again only in the average sense does this form comply with the theory
of elasticity so stress is used for the SIF calculation.

It should be noted thaﬁ a stress singularity of .5 is ass;med at
the free surface for all fracture modes. In modé 3 the parabolic
shear assumption forces k3 equal to zero at the plate surface when in
fact Benthem [1] predicts it to be infinite. However the surface
effects are not believed to greatly influence the value of the SIF
away from the surface and in most work a singularity of .5 is assumed,

see for example Refs. [33,43].
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Table G.1 Strength of stress singularity for the
intersection of a straight crack front with a free
surface in a half-space, Refs. [1,85].

Poisson’s Stress Singularity
ratio mode 1 modes 2 and 3
0. +-.5 +-.5
.15 -.4836 -.5668
.3 -.4523 -.6073
.4 -.4132 -.6286
.5 -.3318 -.6462
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II
Mode ] Mode

Mode III

Figure G.1 Crack surface displacement for the
different modes of loading.
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APPENDIX H

Thin Plate Bending Limit of Fredholm Kernel

We consider the behavior of the Fredholm kernel of Eqn. 3.130 for

a/h approaching infinity. Define

I(y,a/h) = iy e jjx(z)g(t) i, (H.1)
 where
K(z) = ‘42 s A - Ky (2) + Ky(2) + %Kz(z) , (H.2)
" 2
= pltyl 5 p = (102 @/m) = pa/m) (3.3)

First consider the limit for y outside of the crack. This case is
simple because as a/h gets large, z gets large. The only contribution
from K(z) comes from the 4/z2 term. For |y|>1,
limit I*l IO .
a/h+e I(y,a/h) = 1(1+V) 1 (e y) dt | (H.4)
For y inside of the crack domain the variable z can be of order one at
t ﬁear y so it is not clear that these terms are negligible even for

large a/h. :Rewrite I(y,a/h) as follows,

2.+1 2 +1
Iuww=&ﬂH}mmw&=g&;J§mwa&,mw

7(1+0)
22 4 +1
= 2r(1+) { I_IK(Z)E(‘;) dt + Iy K(z)e(t) db } (E.6)

(1-y)
K(w)g(y+u/p) du )

p(1+y) P
- 5y | jo K(ug(y-u/p) du + fo (8.7)
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p { (P(1+Y)

- - - K(wg(v-u/p) du +
2r(1+v) U ) VoA e
(-v) p(1-y)

p(1-y)
Jo K(u) (g (y+u/p)+g(y-u/p)] du | (.8)

Next write Taylor expansions for g(t) as follows,

g(y-u/p) = 'Z(_)(-l)“n—} (/P ) (H.9)
n=
G/ = 22 or W8T (B.10)

where g (y) denotes the nth derivativé of g(y). These expressions are
substituted into the second integral of Eqn. H.8. Because of symmetry
only y>0 will be considerea. After rewriting the first integral using
a simple substitution, Eqn. H.8 becomes,
2 -1+2y
10,/ = gy |, KIPO-0)]e(®) d »

1 2 _2n (P(7V)g -
T Eé% Gt e 0 p Io uK(w) du

(H.11)
Now consider the limit of these two terms separately. Since the first
integral is not singular for y<1, as p gets large all terms of K(z) go

to zero except the 4/22 term. Therefore we have,

. . 2 -1+2y _
limit p 2
afbow Zr(1e0) ), Klp(y-t)]e(t) dt = 77 I_

1+2zg££l_ w
2
1 (9" (g.12)

Now for the second integral of Eqn. H.11. For large u
K (u) ~ [r/(20)] 2 Y (1eafus.. ) (H.13)

where Kn(u) is a Bessel function and a is a constant. The important
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feature is the exponential decay. It can be shown that,

00 n
J U U gy e oY (H.14)
udu
Now divide the second integral in Egn. ﬂ.ll into two integrals,
p(1-y) € p(1-y)
[ 7% () du = [ vPK(u) du + I ORI (H.15)
0 0 ‘ €

where € is suffiéiently large such that the exponentially decaying

"Bessel functions may be neglectéd when integrated from € to infinity,

(here we assume that €<p(l-y)). The first term in the series, (n=0)

requires special treatment.

(P(l y) * f”
) K(u) du = J K(u) du - J K(u) du , (H.186)
-0 p(1-y)

where
® 16 4,8
JJ@)@:[—§+; ;x@ﬂ (H.17)

u .

Now we make use of Eqn. H.14 to evaluate

00 00
2 4

[ K@) dux [ @and) au= s (.18)
p(1-y) p(1-y)

to leading order. The second integral in Eqn. H.15 for n21 including

the coefficient of p—2n from Eqn. H.11 becomes,

1-
0 -%n JP( Y)an(u) du = p—2n IP( Y)zn(4/u ) du =
€ €

ot { a0 Loy} = ot Jap® (8.19)

Now for the first integral in Eqn. H.15. For n21 this integral with

the p—2n coefficient from Eqn. H.11 is,
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-2n (E 2N, , v , nl.."l
p v“K(u) du < O{p )
0

-
3™
(=]

~—

In the limit as p gets large, this term will not have an order one
contribution to I(y,a/h) because €<<{p and therefore it is neglected.

Now we substitute Eqgns. H.12,16,18,19,20 into H.11 and obtain,

. 1+2y
LB (y,a/h) = 70 {I 26 4 .

a/h+o 1 (b- y)2
| d : 2n-1
-2 1 2 1-
W 2 2 T e Ap— 1} . @2
Now look at the first integral of Eqn. H.21.
-1+2y +1 -1+2y
J —'gi—)—dt—§ —gi—)—dt—§ _&_(_)_dt_ (H.22)
-1 (t- y) 1 (t-p)? 1 (e
Substitute the expahsion,
g(t) = }_:0(-1)"3 t-N"g" ) (8.23)
n= .

into the second integral of H.22 and after some algebra,

-1+2y 1+2y
fEM g - f Z(n b 6" %) e =

1 (t- ) 1
_ _22”: 1 2n( )‘1_¥!2n—1 (H.24)
B o (2n)!g Y " on-1 ) )

When this is combined with Eqns. H.21 and 22 we obtain,

limit
a}hiwl( y,a/h) = I(1+V)

_gj_)_ dt (H.25)
+1 (t- y)

which is perhaps the expected result considering Eqn. H.4. The reason

for going through this algebra (and there is probably a better way),

352




is to show that this derivation fails for y sufficiently close to one.

Eqns. H.12,18 and 19 are valid only for,

;ﬁfy—) = o(1) . (H.26)

In the limit as p goes to infinity, the quantity (1-y) must be such
that - the product p(l-y) still goes to infinity. Otherwise Eqn. H.25

is not valid. For more information, see Chapter 3.
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APPENDIX I

Log integrals

The major expense in solving an integral equation on the computer
is in the evaluation and the integration of the Fredholm kernels. 1In
the shell probiem for each point used to integrate the Fredholm kernel
an infinite integral must be determined. The plate kernels are known
in closed form but involve evaluation of Bessel functionms.

Log integrals and integrals of the fornm,

+1 '
(t-y)"nlt-yl (1-tH 2 g6 | —1¢y¢e1 (1.1)
-1

which appear in both the plate and the shell equations, (and in many
other problems) may be the determining factor for convergence of the
integration of the Fredholm kernels. Gauss-Chebychev integration (see
Eqns. E.31-33) is used to show this difficulty for small n in table
I.1. The number of points used to integrate Eqn. I.1 is N. The
closed form expression used may be found in Appendix A. The value of
y does not have a significant effect on these results. Because of
this slow convergence log terms were separated from the kernels for
n<3 with the option of doing them in closed form. The following
asymptotic analysis of the log terms for z = f(t-y) approaching zero
is given for the plate kernels where the subscripts 2,3 and 5
respectively correspond to bending (Mxx), out-of-plane shear (Vx)’ and

twisting (Mxy).

Kpp(2) » T1n(z) + ¢ + T (H%n(a) + 0(z21n(z)) (I.2)
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Kyq(z) ~ FP1n(z) + - 3 p2(E)n(z) 0(z%1n(2)) , @3
Kgg(2) ~ F@)1n(a) + ez - 2 p &%) + 0G° () , (T.4)

Ky (@ ~ 100 [ 1B 16) + e + B0 “‘”51“(”))](1.55

Kge(2) ~ L 1n(z) + cg + % &?1n(s) + 0(z*1n(z)) (1.6)

where the ci’s are constants. In the shell problem these types of
terms come from the large a behavior of the infinite integrals, see
seétion‘J.4 of Appendix J.

To show how these terms affect the convergence of the stress
intensity factors, table I.2 lists results for the plate bending
problem solved in three different ways. First both log(t-y) and
(t—y)zlog(t—y) terms of Eqn. 1.2 are evaluated in closed form:i Then
only the log term is evaluated in closed form. Finally both terms are
integrated numerically. In the case where the log term was integrated
numerically, convergence was unstable for increasing N . The table
shows improved convergence when the zzlnz term is evaluated in closed
form. It should be noted however, that as a/h gets large the
coefficient of this term is proportional to (a/h)z, and it becomes
unwise to separate it from the rest of the Fredholm kernel. This is
generally the case when doing part of the Fredholm kernel in closed
form. For certain parameters the two separate terms become
increasingly equal and opposite and consequently big numbers are added
to small numbers and accuracy is lost. This typically occurs for the

most interesting/difficult geometries. Table I.3 is similar to I.2
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but for out-of-plane shear and for twisting. Here there are five
different cases as can be seen from Eqns. I.3-6. Again it is
necessary to factor out the log term. The other terms are not so
important. My concluéion is that for other than the log term, a
closed form solution should only be used when repeated calculations

are necessary for an "expensive" problem.
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Table I.1 - Convergence of log integrals (see Eqn.

.I.1) using Gauss-Chebychev integration N=w
corresponds to closed form.
Convergence of Log Integrals
y=.49
n=0 n=1 n=2-
N ' . -
20 -.1578327285023e01 .8493750878678e-1 .4311621931347e-1
40 -.1492930970972¢01 .8768209651665e~1 .4319761807491e-1
60 -.1470627952900e01 .8713881420222e-1 .4320566456916e-1
80 -.1482919042609e01 .8693758758624e-1 .4320296083838e-1
100 -.1531715634235e¢01 .8700300152495e-1 .4320130620737e-1
200 -.1492468021175e01 .8708543360460e-1 .4320230905703e~-1
300 -.1491702663902e01 .8705949644705e-1 .4320231744712e-1
o -.1497043010486e01 .8706261970927e-1 .4320228921493e 1
n=3 n=4 n=5

N

20 -.5934890759307e-1 .1070779572998e00 -.1692569091885e00
40 -.5935358973931e-1 .1070783355533e00 1692568662971e00
60 -.5935323791180e-1 .1070783468198¢00 -.1692568670579e00
80 -.5935318085722e-1 .1070783448821e00 -.1692568671124e00
100 -.5935320220412e-1 .1070783444628e00 -.1692568670990e00
200 -.5935320644195e-1 .1070783446586e00 -.1692568670976e00
300 -.5935320568158e-1 .1070783446588e00 -.1692568670977e00
» -.5935320573115e-1 .1070783446580e00 -.1692568670977e00
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Table 1.2 The effect of log terms on convergence
of SIF’s for a cracked plate, v=.3, a/h=l
subjected to bending. '

‘ closed form closed form numerical
N 1nz & z21nz Inz " 1nz & zzlnz
10 .747480 . 747002 .803520
20 .747475 .747434 .764523
30 .747475 .747473 . 748220
40 .747475 .747475 .748087

358




Table I.3 The effect of log terms on convergence
of SIF’s {for a cracked plate, v=.3, a/h=1
subjected to out-of-plane shear and twisting.

out-of-plane shear twisting
Closed form (t—y)nln(t—y), n<3.

N mode 3 mode 2 mode 3 mode 2
10 1.676091 .4656783 -.06969634 .5218047
20 - 1.675977 .4656280 -.06969737 .5218052
30 1.675978 .4656283 -.06969736 .5218053
40 - 1.675978 .4656283 -.06969736 .5218053

Closed form (t-y)nln(t-y), ns2.

‘N mode 3 mode 2 mode 3 mode 2
10 1.676081 .46576%0 -.06872434 . 5218006
20 1.675977 .4656276 -.06969702 .5218053
30 1.675977 .4656284 -.06969738 .5218052
40 1.675978 .4656283 -.06969735 .5218053

Closed form (t-y)"ln(t-y), n<l.

N mode 3 mode 2 mode 3 mode 2
10 1.668236 .4622265 -.06976822 .5218403
20 1.676051 .4656858 -.06969392 .5218064
30 1.675995 .4656386 -.06969702 .5218054
40 1.675984 .4656324 -.06969720 .5218053

Closed form ln(t-y) only.

N  mode 3 mode 2 mode 3 mode 2
10 1.668817 .4554824 -.06769087 .5221562
20 1.676039 .4655730 -.06971322 .5218015
30 1.676022 .4655065 -.06965142 .5218123
40 1.675970 .4655034 -.06972230 .5218015

All numerical.

N mode 3 mode 2 mode 3 mode 2
10 2.846719 .020734 -.06166954 .5240765
20 1.594647 .4349318 -.07014928 .5244262
30 1.654414 .4506305 -.07051167 .5214280
40 1.660155 .4547331 -.07034780 .5215313

100 1.662201 .4583573 -.06995209 .5216891
200 1.666864 .4626725 ~.06966782 .5220058
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APPENDIX J

Asymptotic Analysis of the Shell Infinite Integrals

There are two reasons why the large a behavior of the infinite
integrals must be determined. First the singular behavior of the
integral equation coﬁes from the leading order term in the large a
expansion of the integrand. The second reéson is simply for numerical
simplification. The numerical technique used divides the integral
into two parts, 0 < a < A performed numerically, and a > A which is
evaluated in closed form. The more terms in the expansion, the
smaller need be A.

The complication in the integrand is its dependence on the roots
of the quartic polynomial,

p4 - K)\gps + {[(Xf-)\g)az]mﬂ\g + )\;}pz -

2 2
2.2, 2 2,2, 2},,2 2,2, 2
- {[029a%x + [02ad)e%]2Z)p + [0222)a | R
One need only trace through Chapter 5 to see that the kernels in

question are heavily dependent on these roots.

J.1 Asymptotic Expansions for the Roots of the Characteristic
Equation .

A straightforward asymptotic analysis of the integrands of the

infinite integrals of Chapter 5 would start with the large a expansion

of the roots of Eqn. J.1. They have been found to be
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2X2 4+3&2X4
p 1 . 1 1 . 1 2 . 1 2 R (3.2)
1 4 5,2 ,2,2 6 6,,2 ,2\3 8 9 ! :
SO A 0 oo R A A (e ¥ M
4/3 2/3
p] =a / plj +a / p2J + ij + , 1 =2,3,4 , J 3)
where
1/ _[1-_13_“ [1.5_
Prg = (B)777, P13 = Ppal-2* 1 72 ] » P1g =Pial" 23173 ]
2
-bpl.
Py: = , J=2,3,4 ,
2 4 3 +d
plj
2 2 3
6py :Po:+2aPy :+2bp. .py.+
Pg: = -~ 112 L 1121 , 3=2,3,4 , (J.4)
3 4 3. d
plj
4 2,,2 ,2 4 2 2,2
a= -nkz , b= 2&X2(k1- XZ) R ? = X2 , d= ~&(X1— X2)A ,
2,2 ,2 2 ,2,2
e = —2X2(X1- X2) , I = (Xl- X2) . »(J.5)

By using these roots one can obtain all the quantities found in the

various kernels, for example for large a
D(a) = a*3:EH202- 202 + 0(a%) . (3.6)

This method is good enough to determine the leading order term but
there is a better way which is shown in section J.2. It is also
useful to have the small az(ki-kg) expansion of the roots of Egn. J.1.

They are:

P1,2 = ”o + zﬂl + 2272 + 23”3 + 0(24) ’ ' (J.7)
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Do = 2, 22 R -d+K3 . 0( 4)
3 2 6 8” z '
No Ao 2\,
22 453 3 4
p, = - i » 2250 402 (J.8)
4 2 \6 o8
2 2 2
4 Tn2+o
PN by +ey
2 1,28 ,.4,1/2 _ 00
ﬂo - 2 % 2 (K xz 4x2) H ’71 H

4qg+3aqg+2cqo

22 2 2 .T - -
Gﬂonl+3aﬂonl+;q1+2bnoq1+dﬂo+eql+1

T2 3., 2 ’
4no+3aqo+2cq0
2 3 3=-2 .7 - =
12ﬂoﬂ172+4ﬂ0q1+6aﬂoﬂ1ﬂ2+aql+bﬂl+2bqoqz+2cﬂlqz+dql+eﬂz
Ng = - )
‘ 3 4ﬂg+3ang+2cqo
(J.9)
2,2 .2

=a (Xl-kz) , :j(J.IO)
= 2 1 ' - 2 ’
b = 2&X2 , d=-k8, e= —2X2 , J.11)

where ) is obtained from using the plus sign for o ‘and Py

corresponds to the minus sign.

J.2 Symmetric Asymptotic Analysis

First recall Eqns. 5.39,65,66,67,68,80,81 from Chapter 5.

;= —(pj+02)1/2 . 5=1,2,3,4 , (J.12)
3 KR | [s-0)a® 1]p; - P} =0 (3.13)
PR j
4 1 _
J;‘“j“j“j{ ;- 1 }=2Lo@ | (J.14)
im.R. -0 , (J.15)
5
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4 kp.-1
>k { xng——éﬁi— ; m? } = -aq (@) (J.16)

j=1 173 A
1 lim (" 2 mx

_fl(y) = - 7 %0 o a gégkje cosa(t-y) da , (J.17)

4 +0

X 1+v lim X

Y 2( y) = T x40 { -Kre jg:meJKJRJ

0 =1
1 4 m.X 9 4 m.X

+ — > p.K.R.e J s+ > K.R.e ) } cosa(t-y) da . (J.18)

1-v 53737373 j=1 03

Instead of determining the behavior of the individual quantities of
Eqns. J.17,18, Eqns. J.13-16 are used to determine the behavior of the

entire sum. First Eqn. J.12 is expanded for large a.

0,

] )y B = [1£2] (binomial coef.) . (J.19)

(pJ+ a )1/2 a[ 1+ %

QML'U
00 | =
Rk
+

[}

-ajzja (-1

QND L:U

. . 20 -2/3 . . .
This expansion is valid because (pj/a ) ~ a /" which goes to zero for

large a. Also the following expression will be needed,

1/2
r= [a2+ k(1- V)]
re -ai%%b (- 1)“*1[ a ] , P = E?T%FT . (J.20)

Note that for either r or mj, the large a and small x behavior of the

exponentials may be simplified as follows,

2
e™* ~ exp[—ax{l + % EE - % 22 + ...}] ~e ™ (J.21)
a a ;
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m.X r d -
el ~ expl—ax{l + %

Pok?
004

2
E—b L] (J.22)

The kernels of Eqns. J.17,18 are defined for large a:

4
2
I = Inql(a)/a + I ,90(0)/a=a énj , (J.23)
12 = Il2q1(a)/a + Izz‘lz(a)/a = -FrEmeJKJRJ
. & 2i
+ 1 jglijjRj +a j:lKjRj . ) (J.24)

Therefore the following expressions are needed,

4
SR, , ‘ (J.25)
il
4 s
> K.R. , (J.26)
j=1 3]

.K.R. J.27
zlp:’ ity . ( )

K.R. . J.28

ZmeJ iR (J.28)

From Eqns. J.13-16, Eqn. J.28 can be easily determined,

ngprJaJ = ia(1-V)qy(a) . (J.29)

Also from these equations we can write

z;lmJK R, = iak(1-¥)gy(a) + 2q.(a) (J.30)
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(J.31)

[ V] It\)yt\’)

- .21 :
ZmeJRJ =5 2%(® v i@

Next express Kj in terms of pj. The characteristic equation, J.1 is

first used to write

1.2, s —2-1 (J.32)
£p.-1 2 " 3 - 4 ’ ’
i ,Pj %]

K. can then be written as

p2x2
K. = 5.9
) (g2 a)(np 1)
9 2023262 020222
AW i shLa s
T 202,52 V2 2
(X ) Pj Pj
P: \2
2
XZ( 1) [—%] &, 5=—2——2' . (J.33)
a X2-X1
This expression is used to obtain
4 2,2,2_,2 2,23 1
j{jxjn = a2\ (\5- )jZZ 0 xzj£jpj R, (J.34)
: &=
4 2.2.2 2\ o -1 2. 23
S p.K.R, = a“A°(A\o-\9) D p. R, + MASD R, . (J.35)
5 271473 ) 2:4 )

Therefore we can find all that is needed (Egns. J.25-27), if the

following three sums are known,

4 .
;E;pgle , i=0,1,2 (J.36)
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In a similar way in which Eqns. J.34,35 were found, it may also be

shown that
4 .
-1 -
> 5;'nR; = —00 (@) (3.37)
j=11 aA“(\5-2])
STk, - og(a{ L S0
P ub 2 a 2()‘24@

(1-v) xg

+ L [ 1 i, ] } (J.38)
3| 2.2 2. " 2.2 2.2 : :
o 12202023 20209

From Egns. J.15,31,37,38, the characteristic equation, J.1 can be used

to determine

4

> pam.R. | (3.39)
j=1 J 3 .

for any n because these four equations represent four consecutive

values of the integer n. By making use of Eqn. J.19, Eqn. J.39 can be

converted into
4 n
ZIPJRJ ’ (J.40)
J:

for any n, in particular n = 0,-1,-2, see Eqn. J.36. This involves
algebra, the amount of which is determined by how many terms in the

expansion are desired. The result is

.2 11 -(2k-1 -11
125 2P0 (Zk-1) g2ty (J.41)
S92 —(2k-1) 11
I,® £i£p2k_1a co@ Yy (J.42)
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6

it

21 - (2k-1)

2-Pok-1" +0@ 3y, (J.43)

21 =

i
1R

g2 % 3(1+) + EE:ﬂgk 1 o (Z-1)

. f:a‘(zk‘l)m—u)ak (1)“,0k+1 s 0@y, (J.44)

k=7
where,
11 2 35 4
Py = [ o+ 8 Py - 3 ‘\2] ,
2k+1
k
Poi s = ii; -k il2eldg (4, 5)e@e2-i) L k=1,...,5
J_
12 _ 1 (5_ 3).,2(3 m
p2 - L [5an- §a2ffan- 1],
12 1 X kejel (i
Pok-1 = 13 21 Q,(k,3)d(3k+1-5) , k=1,...,5,
J:

1 2 1 (1,2 3 5 3,2
ﬁf =X [iii[ﬁxz' 57] + 167 ~ 8'2) »

2k+1
Popay = N ji: (-1)ki g2l JQl(k,J)[[ Xch(3k+3—j) -

2
k
-2 c(3k+2 j) - 7c(3k+4-j) =1,...,5 ,

_ -1
pl 2c(1-v) ?

2k . . .
22 = (s, (12 ;E;(-l)k*lvzk‘qu(k,j) X
J:

2
: )
x (% 2Yd@e2-5)- 12 dEka-i)-1d@e3-D]} L k.5
(J.45)
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2,2
7= (5"2]) > (J.46)

n-1
g =3 , ¢ =a + .gan—ici ) (J.47)

[

(J.48)

-1 4

d0 = (1-v) , dn = cn(l—u) - <

Q,(1,1)=x, 0, (1,2)=26\2, Q,(1,3)=R\},

Q,(2,1)=+%, 0, (2,2)=4522, 9, (2,3)=65223-1, g, 2,022 (4hr%-2),
0, (2,825 (:A3-1),

0,3, 1)=63, 4,(3,2)=663\2, 4, (3,3)=6(156125-2),
Q, (3,4)=rA2(2052)5-8), 0, (3,5)=k\5(155°X5-12) ,
Q1(3,6)=Lkg(652k;-8), Q1(3,7)=;xg(;2x3_2),

Q1(4,1)=~4, Q1(4,2)=8~4X§, Q1(4,3)=52(28n2x3-3),

8

2,2 2,4 4 2,4
Q1(4,4)=n X2(565 k2-18), Q1(4,5)=(7On X2—45m x2+1),

2 8

0, (4,6)=)2 (56525-60s205+4) , Q, (4,7)=23 (285"\5-4565+6),

6,4 2,4 8, 4.8 . 24
0, (4,8)=25 (8ch3-186525+4) , 0, (4,9)05 (s A5-3670541),

5 5,2 3, 24
Q,(5,1)=x", §,(5,2)=10e7)3, Q,(5,3)=k"(455"25-4),

3,2 2,4 4,8 2,4
Q, (5,4)=5"25(120835-32) , Q, (5,5)=K (2106 X;-1126725+3) ,

ql(5,s)=nx§(252n4xg-224n2x3+18),
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Ql(5,7)=nx3(210m4x§-280n2

.
X2+45),
6 4.8 2.4
0, (5,8)=RA; (12061 )-2245°X5+60) ,
8, 4.8 2.4 ,
0, (5,9)=Rh, (45672112672 5+45) ,
4.8

10 2.4
0, (5,10)=r);, (106°X;-32515+18),

12, 4,8 , 2,4
Q1(5,11)=5X2 (x x2—4n X2+3),

0, (1,0)=1, §,(1,2)5\,

0y (2,1)=, 0y(2,2)=30\3, 4,(2,3)=3m\, §y(2,4)=n),

By (3, 1)=6%, §,(3,2)=56723, 0,(3,3)=(1067A5-1),
Q2(3,4)=x§(1o»2xg-3), q2(3,5)=x§(5n2x§—3),
qé(3,6)=xg(52x§-1),

0,4, 1=, §y(4,2)=T500, Q(4,3)=r(215725-2),
q2(4,4);nx§(35n2x4-10), q2(4,5)=nx§(35n2x3-20),

2

2
6 4 8, 2.4
0y (4,6)=rA5 (21672 5-20) , Q5(4,7)=RA; (7K X5-10),

10, 2,4
Q2(4,8)=nk2 (x kz

’2) ’
0,6, D=, §,(5,2)=06%3, 8,(5,3)=k(36£25-3),

2. 2.4 4.8 . 2.4
Q2(5,4)=52X2(84n Ag-21), Qy(5,5)=(1265"25-63K"X5+1),

0, (5,6)22 (1268 25-105£525+5),
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Q2(5,7)=Xg(84n4xg—105n2x3+10),

6 nn. 4y 8 o 24
0,(5,8)=), (36K A5-635°X5+10),

0,(5,9) A5 (s r5-2165%+5),

Qz(s,10)=x;°(n4xg-3n2xg+1) . (3.49)

As mentioned at the beginning of this appendix, the infinite
integrals are divided into two parts. The portion from A to infinity

is integrated in closed form. This part can be written as,

00

[ 1, cosa(t-y)da , 1,j=1,2 . (J.50)
At

This integral for Iij of the form given by Eqns. J.41-44 is evaluated
in section J.4 of this appendix. The following expressions are used

in Eqns. 5.84,85.

2n-2
j{ijH NE) —11511577—1n|t-y| .

2n-2 5 4. _ ‘
+Zp2n NG 1)n+1 _(%%)_ZTFC(IMZ;/?;;‘I_IFC(%—I) , j=1,2 , (J.51)
n=

2n-2
ZZ:ﬂZH N R e L

2n-2
. Zp2n ()t Bt () sz o), (.52

2n-2 ‘
{253ﬂ2n 1150- u)ZEjpn+1( D%} )" ot inleyi «

6 o0 ( }2n-2
* {E§§ﬂ§§-1+‘(1‘”)§§;pn+l('1)nan+1}(-1)"+1 25n—2)! Fol) +
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{i 22 1 i n+l n }§ on-1 7.53
{2 e 0 2 ) (o) (3.53)

J.3 Skew-Symmetric Asymptotic Analysis

The same procedure that was used in section J.2 is used here.

The necessary equations are 5.93-96,106-108, which are repeated below,

4 | | o
TR = %@ (J.54)
)= :

4 | :

>R.=0 , (J.55)
Aj=1 h|

4 .

S wlR, = q,(e) . - (J.56)
P I R

ZIRJKJ (p;-1) = q3(a) , (J.57)

_ 1 lim +® =1 4 2 2 X
-£2(y) = 27 x40 _“{r(l_y)jgl(mj-ua JKRoe™ 4

-iay
+ Ic;meJKJRJ(a)e }e da |, (J.58).

-,(y) = &= 1in [ aZm R, (a)e eV g4 (J.59)

2 2
—2)\ 1+v lim * rx!a +r7)
(Y) 2r x+0 {ZK R, [ iar(1-v) (m -va ) -

m.x _.a '
- 2iange ] ]} e % da . (J.60)

Eqns. J.19-22 are again used. The kernels in Egns. J.58-60 are

defined as follows for large a,
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I, = I q05(0)/a + I5,q,(a)/a + Toqc(a)/a =

4 2 4 -4
-1 a
= —— E K.R., - — E K.R. E .p.K.R. , J.61
r(l—V)jzlpJ A B S e I ' ﬁjzlmeJ i@ (7.61)

]

I4 = I43q3(a)/a + 144q4(a)/a + 145q5(a)/a

4
= iaZ m.R.(a) , (J.62)
j=1 3]

15 = Is3q3(a)/a + 154q4(a)/a + Issqs(a)/a =

4 2 2 2 2
=3 -(a”+r™) a(a®+r") . ]

From Eqns. J.54-57 we find:
2
Xz(l—u)

4

-2 k(1-v)

> p:R. = q.(a) - -
P at I B {azxz(xg-xf) a4x2(x§-xf)2}

i
- (M35 5 2 (J.64)
a ) (X2—X1)

4 _ (1-v) q¢ (a)
P A PCIONE (J.65)
j=1 1 3 2%\ (5]
4
>R.=0 , (J.68)
j=11
4

.R. = . J.67
gz;pj ;= 9@ (J.67)

Combined with Eqn. J.1 the following may be determined,

4 n
2Pk, . (J.68)
=1
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for any

obtained

33

34

35

43
44
45
53
54

55

where

33
21

n from which all of the expressions in Eqns. J.61-63 may be

t

R

1R

1

o any order of a. The result is:

4 L]
-ia + ingi_la' (2k'1)—iaZ(-1)k(p/a2)kek + O(a_g)
k=1 k=5
(3.69)

wZo2ad)- D2] - > 1734 @ 0@, @)

Zﬁ35 -(2k) é(’l)k(/’/"z)k[ek‘%k+1] s 0@0) , @.m)

2,2 ‘
023 3 "
L i3 g 0 0™ 3.7
a2+ 44 —(2k-1) 9
3+ kzlpzk_la +0@7) , (J.73)
4 45 (k1) | 0 »
1;2—‘1p2k X, +0(7) , (J.74)
3 ® )
z:ipgia‘(m‘h azlz:s(-l)k(p/az)k[ek_ “2e,] + 0(a’®) , (J.75)
4 54 -(2k-1) 9
DI fo@®) (3.76)

4 e
ia(l+v) + ingi_la‘(m"l) ST
k=1 - :

- mZ( D (p/ah)¥ ey -teyrdey,g] + 0@, (37D)

1

K_n4.,4
x0n 16027 o
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0o %o

33 2 6 4 2 2 3
p3 = -p e2+n7[—a35X2+a43nX27~a53nx27 +agh] ] )
33 _ 3 6, 2.4 .\ _ 4 .24 2.2, 24
P33 = pPegenya 0l (6B05-1)-a 057 (5525-3) +aghar” (106225-3) -

2,2 4

3 2,4 2.5
-, (10x A2—1)+a85m AoT -agh”Y ] )

4 10, 2.4 8 . 24
B33 = —pte ory[-agmhi0 (6BA3-2) +agar 3y (76%05-10) -

6_2 2,4 4 4 3 2,4 2 4 2,4
—a7xX27 (21« X2—20)fa8nX27 (35« X2-20)-agnk27 (35« x2-10)+

5 2,4 3,2, 6 3.7
+a,0%7 (21x X2—2)-a117x X27 DL | ] )

2[ 16 o .14 22 3
= KX [aznxz-a33x7x2+a435x27 -aghy ] )

2 6, 2.4 4,..2.4 22, 24
£t = NZ[-ad (6B-1) 42,y (55205-3) -ap 2 (1065 5-3)+

2,2 4

3 2,4 2.5
+ag?" (10% Xz—l)—a75n Ao +agh™Y ] )

34 .2[ .10, 2.4 8 . 2.4 62, 2.4,
£ = 2[a, 10 (Hr%-2) 2,057 (76203-10) +agmrS7 (216*23-20) -

43 2,4 2 4 2,4 5 2,4
-a7nx27 (35« X2—20)+a85X27 (35« kz—lo)—agn7 (21« X2—2)+

3,26 37
21075 gl 2y F T ] ,

2] .10, 4.8 . 2.4 8, 4.8 . 24 . -
A2t = 22 l0(h8-36B51) 2y (95 21k OB

6,2 np 48 oo 2,4 3.4, 4,8 2,4
~anhoT (36K hg-63K15+10) +ag] N, (845" A,-105£"1)+10) -

4,8 324

4 4 4,8 2,4 5
—a9X27 (126« X2—105& k2+5)+a107 (126% 2 2"

1)-

2,2 6 2,4 2.7 2,4 4,2 8 4.9
-2k X27 (84« X2-21)+a12x 7" (36K X2—3)-a139n X27 +a 8 ],
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4 .2 2]
p2 = -p(e1—2e2)+x(1—u)[—a2x2+a32x27—a47 ] ,

35 2 8 6 4 2 2.3 4
ﬁ4 =p (e2—2e3)+n(l-u)[a3nx2-a44nk27+a56&k27 -a64nk27 +a K] ],
35 3 8,24 6 2,4
B35 = g3 (eg-2e,) 45 (1) [-a NS (sBA3-1) +ah Dy (65225-4) -

14,2 2,4 23 2,4 4 2,4
—ask27 (15« x2-5)+avx27 (20« x2-4)-a87 (15« x2-1)+

2

2,25 2.6
+a96n k27 “a10% 7 ] )

35 4 12, 2.4 10_,, 2.4
=p (e4—2e5)+x(l—u)[a5n)\2 (x x2—2)—a6xx2 7(8« X2-12)+

8 2 2,4 6 3 2,4 4 4 2.4
+agkhy] (28« X2-30)-a8nX27 (56« X2—40)+aan21 (70« k2-30)—

2.5 2,4 6 2,4 3,2 7 3_8]
_a10‘x27 (56% X2—12)+a11m7 (28« k2-2)—a1285 x27 +a135675J ,

_pz = (7/32)[-a3;x§+a42nx§7-a5»72] )

43 2 4, 2.4 2 2,4 2,,.2,4
A3 = Y [a 0 E (P10 22y (2620 5-1) +a7° (B6DA5-1) -
2,2 3 2 4
—a74m X21 +agh™] ] ,
4 2 8, 2,4 6 2,4 4 2 2.4
A8 = (1N [-agm8(03-2) rag2ergy (36705-4) - mhg)” (155 25-12)

2.3 2,4 4 2,4 3,2 5 3.6
+aghhy] (20x k2—8)—agn7 (15« X2-2)+alosn X27 a8 ] )

44 [ 5 2 ,2,2 1,2,2
Py = ‘[128(x2—x1) + 8\ o
44 4, 2.4 2 .. 2.4 2, 2.4
Py = -a3x2(n X2-1)+a4k27(4» k2-2)-357 (6« x2-1)+

2,23 2.4
+agdn k27 —agktY
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44 8,24 6 2,4 4 2 2,4
P = a4nX2(n X2—2)—a5LX27(6n X2-8)+a65k27 (15« X2—12)—

3,25

23 2,4 4 2,4 3.6
—a,26057 (1057X,-4) +aghy (15« k2—2)—a96n AT *a108" T

44 8, 4,8 . 2.4 6 ,. 4.8 .o 2.4 '
P = —askz(n X2-3& X2+1)+a6X27(8& Ay-18k X2+4)-

8

8—
2

4 2 4 2,4 23 4 2,4
—37X27 (28c"\,-45c X2+6)+a8X27 (56« k2 60« k2+4)—

8 2

~agy™ (70s)5-45x X§+1)+a1052X§75(56&2X3—18)-

2.6 2,4 4,2 7 48
—a,1577 (28« A2—3)+a128n AT -2k T

X2+X2
P - -2
16X\

pgs = (l—u)/kz[aanxg-a43nxg7+a53sx§72—aﬁn13] )

oo - (1-0) N2[-2 A8 (DrE-1) +ah By (56D5-3) -aghar” (1067N5-3) +
+a773(10x2x;-1)-a85u2x§74+a95275] )

ﬂ$5=(1—u)/k2[asnkéo(nzkg—2)-askgn7(7n2k;—10)+a7nkg72(21nzké—20)-
-a8X3n73(35n2X;—20)+agmxg74(35nzkg—10)—a10n75(2152X3—2)+
+a

326 37
1175 g1 219877 ] ’

53 2 2
Py =» (81‘292)'27[a3x2‘347] ,

53 3 |
Py =-r (e2'233)‘27[‘34‘xg*353‘xg7”ass‘x§72*a7‘73] ,
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53
p6=

4 6, 2.4 4 2.4 22, 24
P (e3-2e4)-27[a5x2(n M-1)-agh iy (55205-3) va 22 (10572 2-3) -

2,2 4

3 2,4 2,5
~agT (10« X2-1)+a955 X27 21087 ] )

5 10, 2.4 8 2.4
= 1% (e -2eg) 27| -2l (k2n5-2) va, Sy (7651 5-10) -

6 2 2,4 4 3 2,4 24 2,4
—asnxzq (21« X2-20)+a95X27 (35« X2—20)—a10nX27 (35« X2—10)+

5oy 204 o 3,26 37
+a11&7 (21« X2-2)—a127x x27 +a,35"] ] )

2 6 4 2.2 3j
2) la3EX2—343LX27+a53nk27 -agkY J R

1]

2.4 22, 24
232[-a, A8 (2hE-1) vagh 57 (55205-3) -2 gh2n% (106715-3) «

2,2 4

+a773(1052X3-1)-a855 A7 +395275] )

= B2 [a n10(E-2)-2 57 (76%05-10) va, 007 (216515-20) -

4 3 2,4 24 2,4 5 2,4
—asxx27 (35« k2—20)+a9nk27 (35« k2—10)—a10n1 (21« X2—2)+

3,2, 6

37
+a1175 X27 _312” 7 ] ,

-1

£(1-v) ’

2 4 2
p (e1-4e2+4e3)+2(1-u)[*a3x2+a42x§7-a57 ] ,

3 8 6 4 2
-p (e2—4e3+4e4)+2(1—u)[a4nX2-a54LX21+a665X27 -
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2.3 4
—a74nX27 +aght ] ,

55 4 8, 2.4 6, 2.4
= pt(eg-te o) +2(1-0) [-a M (6205-1) +aS7 (6570 5-4) -

4 2 2,4 23 2,4 4 2,4
-a7X27 (15« k2-6)+a8X27 (20« k2-4)—a97 (15« X2—1)+

2,25 2.6
+2, 0887057 -2 1KY ] . (J.78)

The constants defined in section J.2 also apply to this section.

Other constants that are introduced are:

[ 2 ]’1/2

L L6 =) ’
1, -1w n 2
ro~-a Eééen(—l)n[ 55 ] ' P = Ry (J.79)

As mentioned at the beginning of this appendix, the infinite
integrals are divided into two parts. The portion from A to infinity

is integrated in closed form. This part can be written as,

00
I Iijcosa(t-y)da , 1=3, j=3; i=4,5, j=4,5 ,
A v .

00
| Ijsina(b-y)da , i3, j=4,5; i=4,5, j=3 . (J.80)
A

This integral for Iij of the form given by Eqns. J.61-63 is evaluated
in section J.4. The following expressions are used in Eqns. 5.109-

111.

_ 4 [
T3 = {Eé%[pgi_1+(xz/x)ngﬁ_z]+j{%-en(-1)“p“} X

n=

2n-2
x{(-1)“—1%§§%§71—1n|t-yy + F_(2n-1))
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([ 10 ) Soe 0%y

2n-2
X(—l)n+l'1%§§%§57-Fc(l) ’ | (J.81)
= 4. 34f, . nel(t-y) 272 = n(t-y) 221
I34 = Eégng{('l) (@n-1)1 T (1) +Fg(20)+(-1) =5 337 Inlt-yl},
(J.82)

n=1 n=5
{ n (t- 2n—11 |. L\ nel (t- 2n—1F
X D) T @pyr ity F (20) + (1) G Ty RO
’ (J.83)
3
= 43 2.4 N
Iz = -{52%[p2n+(x2/X) p2n—1]} X
2n-1 nel (t- 2n-1

Inlt-yl + F_(20) + (-1) —itﬁﬁ%ijT—Fc(l)}

(J.84)

X {(—l)n %Qn—l)!

2n-2

= 4 43 n (t-y)° =
I4j = Eé;ng_l{(-l) —iziﬁ%ETT—lnlt—yl + Fc(2n—1)} +

4 : 2n-2
* jiiﬂgg_l(-1)“+1—1%§§%§77—Fc(1) , 3=4,5 ,  (J.85)
n= -

4 ° i
Iz = {EE;[pgi-(xz/X)ngﬁ_l]+E§%(-1)“p (en-l‘zen)} X

2n-1 2n-1

X {(—l)n—i%éﬁ%ijT—lnlt—yl+Fs(2n) . (-1)“*1—1%§§%ITT—FC(1)} ,

(J.86)

4 2n-2
= S [F (t-y)“" 7
Tgy = Il:2”2n—1{1a<:(2n—1)+(—1)n (2n-2)! lnlt—yl} *
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4 2n-2
: gﬂgﬁ_ﬂ-l)“”%ﬁ}z—)!—r‘cu) , (3.87)
I = {ip55 +i(—1)n n(e -4e +4e )} X
55~ 1 &fon-1 "V P o170

_ _oy2n-2
X {Fc(zn-1)+(-1)§1%§§%§3T—1n|t-yl} R

4 » ( ]2n—2 :
* {Eéipgi—l +5§%(_l)npn(en—1-4enf4en+l)} (-1)n+1 %én—2)! Fc(l) )

(J.88)

J.4 Integrals From A to Infinity

We need expressions for

00

cosa(t-y) 4, (J.89)
2n-1 ’ :

A a n

‘-
sina(t-y) 4, A0, 30 . (3.90)
2n
A a
These integrals come from the large a expansion of the Fredholm
kernels. Note that for n>0 the limit for x+0 has been taken under the
integral sign. The n=0 cases of Eqns. J.89,90, for which the limit

must be taken after integration, are respectively demonstrated below,

iig oae_axcosa(t—y) da = (t-1)2 ) - (J.91)
-y
lin we“”‘sina(t- ) da = —— (J.92)
x+0 0 y - t-y . .
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The 1/a case of Eqn. J.89 has a log singularity, the l/a2 term of J.90
becomes (t-y)lnlt-yl and so on. This is shown in the general

expressions presented below:

_ _oy2n-2
) j ﬂs—"—(t—ﬂ da =F_(20-1) + (- i’z—zﬂm—!pcu) .
2n-2
+ (-1)° -(E!)W—lnlt—yl , (J.93)
2n-1
I §lﬂ£i§_ll da = (2n) + (- 1)n+1 iiﬁﬁ%TTT'Fc(l) +
\2n-1
+ (- " 11511177-1n|t—y| , (J.94)
where
Alt-yl _ -
F (1) = -7, - la(k) - [T el gy (3.95)
541 (6-9)2372(2n-1-2§)!
F (20-1) = Z( -1) WY cosA(t-y) +
j=1 (2n-2) 1A“%74)
(t—y) (2n—2—2j)! .
+ :E:( 1)J : sinA(t-y) , (J.986)
) 202y 1A20-23-1
F e = Sopil e ot
R = (20-1) 142723+1 o y
-1 . 2j-1 .
s > (it e Gol2D! gy (3.97)
j= (2n-1) 1A“R743
The constant in Egn. J.85 is Euler’s constant, Te =.57721566490153.

This expression is a cosine integral, Ci[Alt-yl], with the log term

- taken out.
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